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Universitat Autònoma de Barcelona

A dissertation submited to fullfill the degree of
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patrocinio para la realización de esta tesis, por otorgarme no sólo una beca sino una

oportunidad de mejorar personal y profesionalmente. Retribuiré profesionalmente cada

centavo invertido en mı̂.

También quiero agradecer al Instituto Politécnico Nacional, por darme la opor-
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Abstract

The compression of an image is posible assuming that a portion of its information is

redundant. Hence, this Ph.D. thesis proposes to exploit visual redundancy, existing in

an image, reducing unperceivable frequencies for Human Visual System.

First, we define an image quality assessment, which is highly correlated with the

opinion of observers. The proposed metrics weights the well-known PSNR by means of

a Chromatic Induction Model (CwPSNR). Second, we propose an image compression

algorithm, which exploit the high correlation and self-similarity of pixels in a given area

or neighborhood by means of a fractal function, called Hi-SET. Hi-SET possesses the

main features that modern image compressors have, namely it is a embedded coder,

which permits a progressive transmission. Also, we propose a modification to the uni-

form scalar quantizer, which is applied to a pixel set in a certain Wavelet sub-band.

Unlike this, the proposed modification permits to perform a pixel-by-pixel forward and

inverse quantization, introducing into the compression process a perceptual distortion.

Finally, a coding method for Region of Interest areas is presented, ρGBbBShift, which

perceptually weights pixels of these areas in addition to maintain only the more impor-

tant perceivable frequencies in the rest of the image.

Results exposed in this thesis show that CwPSNR is the best-ranked image qual-

ity assessment, when it is compared to the most common image compression dis-

tortions such as JPEG and JPEG2000, since CwPSNR possesses the best correlation

with the opinion of observers, which is based on the results of psychophysical experi-

ments belonging to the most important image databases in this field of science such as

TID2008, LIVE, CSIQ and IVC. Furthermore, Hi-SET coder obtains best results than
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the JPEG2000 coder and other coders that use a Hilbert Fractal for image compres-

sion. Hence, when the proposed perceptual quantization is introduced to Hi-SET coder,

called ΦSET, our compressor increments its efficiency both objective and subjective.

When ρGBbBShift method is compared against MaxShift method of the JPEG2000

standard Part II, images coded by our method get the best results, comparing the

overall image quality.

Both the proposed perceptual quantization and ρGBbBShift method are general

algorithms that can be applied to another Wavelet based image compression algorithms

such as JPEG2000, SPIHT or SPECK, for instance.

vi



Resumen

La compresión de imágenes es posible asumiendo que cierta parte de la información en

ella es redundante. Aśı, este trabajo de tesis doctoral propone explotar la redundancia

visual existente en una imagen, reduciendo frecuencias imperceptibles para el sistema

visual humano.

Por lo que primeramente, se define una métrica de calidad de imagen que está al-

tamente correlacionada con opiniones de observadores. La métrica propuesta pondera

el bien conocido PSNR por medio de una modelo de inducción cromática (CwPSNR).

Después, se propone un algoritmo compresor de imágenes, el cual explota la alta cor-

relación de un vecindario de pixeles por medio de una función Fractal, llamado Hi-SET,

el cual posee las mismas caracteŕısticas que tiene un compresor de imágenes moderno,

como ser una algoritmo embedded que permite la transmisión progresiva. También se

propone una modificación a la clásica cuantificación Dead-zone, la cual es aplicada a

un grupo entero de pixeles en una sub-banda Wavelet dada. La modificación propuesta

permite hacer una cuantificación directa e inversa pixel-por-pixel introduciendo una

distorsión perceptual. Finalmente se establece un método de codificación de areas de la

Región de Interés, ρGBbBShift, la cual pondera perceptualmente los pixeles en dichas

areas, en tanto que las areas que no pertenecen a la Región de Interés o el Fondo sólo

contendrán las frecuencias perceptualmente más importantes.

Los resultados expuestos en esta tesis indican que CwPSNR es el mejor indicador

de calidad de imagen en las distorsiones más comunes de compresión como son JPEG

y JPEG2000, dado que CwPSNR posee la mejor correlación con la opinión de obser-

vadores, dicha opinión está sujeta a los experimentos psicof́ısicos de las más importantes

bases de datos en este campo, como son la TID2008, LIVE, CSIQ y IVC. Además,
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el codificador de imágenes Hi-SET obtiene mejores resultados que los obtenidos por

JPEG2000 o los de otros algoritmos que utilizan el fractal de Hilbert para comprimir.

Aśı cuando a Hi-SET se la aplica la cuantificación perceptual propuesta, llamándolo

ΦSET, se incrementa su eficiencia tanto objetiva como subjetiva. Cuando el método

ρGBbBShift es comparado con el método MaxShift de JPEG2000 Parte II, se obtienen

mejores resultados perceptuales comparando la calidad subjetiva de toda la imagen de

dichos métodos.

Tanto la cuantificación perceptual propuesta como el método ρGBbBShift pueden

ser aplicados a otros algoritmos de compresión de imágenes basados en Transformada

Wavelet, tales como el mismo JPEG2000, SPIHT o SPECK, por citar algunos ejemplos.
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Chapter 1

Introduction

The main objective of this thesis is in one hand to identify and to remove non-perceptual

information of an image, maintaining as far as possible, the same entropy as the source

image and the other hand to introduce these perceptual criteria into a proposed image

compression system.

1.1 Problem Statement

One of the most amazing abilities of human beings is Vision, since it is considered the

most important sense, but the most difficult to model. When a light ray enters into

our eyes undergoes a highly complex process, which ends in the visual cortex of brain.

Color researches try to better model some features of the Human Visual (HVS). Thus,

an adequate model can be easily incorporated into many image processing applications

such as Quality Assessment instuments and image compression schemes.

Nowadays Mean Squared Error (MSE) is still the most used quantitative perfor-

mance metrics and several quality measures are based on it, Peak Signal-to-Noise Ratio

(PSNR) is the best example of this usage. But some authors like Wang and Bovik in

(56, 58) consider that MSE is a poor device to be used in quality assessment systems.

Digital image compression has been a research topic for many years and a num-

ber of image compression standards has been created for different applications. The

JPEG2000 is intended to provide rate-distortion and subjective image quality perfor-

mance superior to existing standards, as well as to supply functionality (10). However,

JPEG2000 does not provide the most relevant characteristics of the human visual sys-
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1. INTRODUCTION

tem, since for removing information in order to compress the image mainly information

theory criteria are applied. This information removal introduces artifacts to the image

that are visible at high compression rates, because of many pixels with high perceptual

significance have been discarded.

Hence it is necessary an advanced model that removes information according to per-

ceptual criteria, preserving the pixels with high perceptual relevance regardless of the

numerical information. The Chromatic Induction Wavelet Model (CIWaM, proposed

by Otazu et. al. in (32, 33)) presents some perceptual concepts that can be suitable

for it. Both CIWaM and JPEG2000 use wavelet transform. CIWaM uses it in order

to generate an approximation to how every pixel is perceived from a certain distance

taking into account the value of its neighboring pixels. By contrast, JPEG2000 applies

a perceptual criteria for all coefficients in a certain spatial frequency independently

of the values of its surrounding ones. In other words, JPEG2000 performs a global

transformation of wavelet coefficients, while CIWaM performs a local one.

CIWaM attenuates the details that the human visual system is not able to perceive,

enhances those that are perceptually relevant and produces an approximation of the

image that the brain visual cortex perceives.

Therefore, this dissertation is centered in the incorporation of CIWaM, in many

parts of a image compression system.

1.2 Image Compression Systems

General System Theory defines information = −entropy, this is, entropy is the ten-

dency that systems have when they wear down or disintegrate by themselves or external

factors(8). Thus, entropy means the loss of a given information. Then, a compressed

image should have almost the same total entropy as the original, but in fewer bits.

That is, it has more entropy per bit. The main goal of modern image compression

systems is to exploit redundancies of images, understanding some information as re-

dundant. These redundancies can be either statistical or due to visual or application

specific irrelevancies(50, Sec. 1.2).

In general, a system is composed by four subsystems: an input, a precess, an

output and a feedback (cybernetic model depicted in Figure 1.1). Hence, a system can
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1.3 Proposed Perceptual Image Compression System

be defined as a set of elements standing in interrelation among themselves and with

environment.

Figure 1.1: Description of System according to General System Theory.

The subsystem Process is a black box for the subsystem Feedback, and vice versa.

Feedback is employed in order to adjust some parameters or to assess the efficiency of

the Process. Similarly, an image compression algorithm can be described as follows,

Figure 1.2:

• Input : Original image considered with infinite quality f(i, j);

• Process: Set of sub-processes, these are commonly: Forward Transformation (Sec-

tion 3.3), Quantization (Section 3.4), Entropy Coding, Entropy Decoding, Inverse

Quantization and Inverse Transformation. When a ROI algorithm is used, it is

placed before Entropy Coding;

• Output : Reconstructed image f̂(i, j), whose quality has been presumably dis-

torted;

• Feedback : Assessment of the posible distortion between original and reconstructed

images, in order to measure the efficiency of the image compression system. MSE

and PSNR are the most common image quality assessments. Advantages and

drawbacks of these important measurements are described in Section 2.1.

1.3 Proposed Perceptual Image Compression System

In this dissertation, we introduce perceptual criteria in specific sub-process of a general

image compression system, Figure 1.1, such as Forward and Inverse Perceptual Quan-

tization, Perceptual Region of Interest, an alternative way of Entropy Coder, besides a

perceptual image quality assessment, green blocks in Figure 1.3.
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1. INTRODUCTION

Figure 1.2: General Block Diagram for an image compression system.

Therefore the parts, that our systems includes,are:

• Input : Original image considered with infinite quality f(i, j);

• Process: Set of sub-processes: Forward Wavelet Transformation (9/7 analysis

Filter, Table 3.2), Forward Perceptual Quantization (using a Chromatic Induc-

tion Model, Section 2.2), Hi-SET Coding, Hi-SET Decoding, Inverse Perceptual

Quantization (Section 4.4) and Inverse Wavelet Transformation(9/7 synthesis Fil-

ter, Table 3.2). When it is important to encode and to decode an specific area of

the image first, we propose a Region of Interest algorithm, ρGBbBShift method,

described in Section 5.2.2);

• Output : Reconstructed image f̂p(i, j), whose perceptually important frequencies

have been enhanced of the rest of frequencies;

• Feedback : The proposed image compression system needs a perceptual metrics,

which is why we propose a perceptual assessment, based on the interpretation of

energy degradation.

Figure 1.3: General Block Diagram for the proposed perceptual image compression sys-
tem.
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1.4 Thesis Outline

1.4 Thesis Outline

This dissertation consist of four chapters (4 to 5) that describe the new contributions

of this work.

In Chapter 2 we propose a quality assessment, which weights the mainstream PSNR

by means of a chromatic induction model (CwPSNR). This is feasible referenced-

measuring the rate of energy loss when an image is watched at different distances.

CwPSNR is the best-performing algorithm, when an image is distorted by JPEG block-

ing or wavelet ringing, namely images compressed by any Discrete Cosine Transform

(DCT) or wavelet based image coder, across databases TID2008, LIVE, CSIQ and IVC

not only on an individual image database but also overall performance.

In Chapter 3 we present an effective and computationally simple coder for image

compression based on H i lbert Scanning of Embedded quadT rees (Hi-SET). It allows

to represent an image as an embedded bitstream along a fractal function, avoiding

to store coordinate locations. Embedding is an important feature of modern image

compression algorithms, in this way Salomon in (42, pg. 614) cites that another feature

and perhaps a unique one is the fact of achieving the best quality for the number of

bits input by the decoder at any point during the decoding. Hi-SET possesses also

this latter feature. Furthermore, the Hi-SET coder is based on a quadtree partition

strategy, which is naturally adapted to image transformation structures such as discrete

cosine or wavelet transform. This last property allows to obtain an energy clustering

both in frequency and space. The coding algorithm is composed of three general steps,

using only one ordered list, the list of significant pixels.

The aim of Chapter 4 is to explain how to apply perceptual concepts in order to de-

fine a perceptual forward and inverse quantizer, which will be introduced to the Hi-SET

coder. The approach consists in quantizing wavelet transform coefficients using some

of the human visual system behavior properties. Taking in to account that noise is

fatal to image compression performance, because it can be both annoying for the ob-

server and consumes excessive bandwidth when the imagery is transmitted. Perceptual

quantization reduces unperceivable details and thus improve both visual impression

and transmission properties. The comparison between JPEG2000 coder and Hi-SET

with the proposed perceptual quantizer (ΦSET) shows that the latter is not favorable in

PSNR, but the recovered image is more compressed at the same or even better visual

5



1. INTRODUCTION

quality measured with well-know image quality metrics, such as MSSIM, UQI or VIF,

for instance.

Chapter 5 describes a perceptual method for codding of Region of Interest (ROI)

areas. Introducing to the GBbBShift method perceptual criteria when bitplanes of

ROI and no-ROI background areas are shifted. This additional feature is intended

for balancing perceptual importance of some coefficients regardless their numerical

importance and for not observing visual difference at ROI regarding MaxShift method,

improving perceptual quality of the entire image.

Finally general conclusions are drawn, in addition to some recommendations for a

prosecution of this work are presented.
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Chapter 2

Full-Reference Quality

Assessment using a Perceptual

Chromatic Induction Model.

Application to JPEG and

JPEG2000 images

2.1 Introduction

Nowadays, Mean Squared Error (MSE) is still the most used quantitative performance

metrics and several image quality measures are based on it, being Peak Signal-to-Noise

Ratio (PSNR) the best example. But some authors (56, 58) consider that MSE is a

poor measure to be used in quality assessment systems. Therefore, it is important to

know what are the MSE goodnesses and what are its problems in order to propose new

image quality metrics that try to reproduce the properties of the Human Visual System

(HVS).

In mathematical notation, let f(i, j) and f̂(i, j) represent two images to be com-

pared, being f(i, j) the original reference image (which has to be considered with perfect

quality) and f̂(i, j) a distorted version of f(i, j) (whose quality in comparison to f(i, j)

7
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is being evaluated). The MSE and the PSNR are:

MSE =
1

NM

N∑

i=1

M∑

j=1

[
f(i, j)− f̂(i, j)

]2
(2.1)

and
PSNR = 10 log10

(
Gmax

2

MSE

)
(2.2)

where Gmax is the maximum possible intensity value in f(i, j) (M × N pixels). That

is, for 8 bit per pixel (bpp) gray-scale images we have Gmax = 28 − 1 = 255. For color

images the PSNR is also defined by Eq. (2.2), where the color MSE is the mean MSE

of the RGB components.

Both MSE and PSNR are extensively employed in the image processing field because

these metrics have favorable properties, such as:

1. An efficient metrics for algorithm optimization. For example in JPEG2000, MSE

is used both in Optimal Rate Allocation (5, 50) and Region of interest (6, 50).

2. MSE gives a clear meaning of the overall error signal energy because it is the

energy of the difference signal between the two images.

However, the main problem of MSE is that it has a poor correlation with perceived

image quality. An example is shown in Fig. 2.1, where both Baboon(a) and Splash(b)

images are distorted by a JPEG2000 compression with PSNR=30 dB. These two noisy

images have the same numerical image quality (e.g. PSNR) but they show dramatically

different visual qualities. Thus, MSE and PSNR do not reproduces how the HVS

perceives images.

(a) Image Baboon (b) Image Splash

Figure 2.1: 256 × 256 patches of Images Baboon and Splash compressed (i.e. distorted)
by JPEG2000, both with PSNR=30dB. They are cropped for visibility.

8



2.2 Chromatic Induction Wavelet Model: Brief description.

In section 2.2 we outline the CIWaM chromatic induction model. It inhibits or

enhances information according to perceptual criteria, preserving the pixels with high

perceptual relevance and inhibiting those with low perceptual impact. This model is

used in section 2.3 in order to define the proposed CwPSNR image quality metrics.

Section 2.4 shows experimental results, comparing CwPSNR with twelve image quality

metrics such as MSSIM (53), SSIM (44) and VIF (57), among others. In these tests

we use the perceptual image quality information supplied by the four image databases

TID2008 (38, 39), LIVE (45), CSIQ (22) and IVC (23).

2.2 Chromatic Induction Wavelet Model: Brief descrip-

tion.

The Chromatic Induction Wavelet M odel (CIWaM) (32) is a low-level perceptual

model of the HVS. It estimates the image perceived by an observer at a distance d just

by modeling the perceptual chromatic induction processes of the HVS. That is, given an

image I and an observation distance d, CIWaM obtains an estimation of the perceptual

image Iρ that the observer perceives when observing I at distance d. CIWaM is based

on just three important stimulus properties: spatial frequency, spatial orientation and

surround contrast. This three properties allow to unify the chromatic assimilation

and contrast phenomena, as well as some other perceptual processes such as saliency

perceptual processes (29).

Figure 2.2: Continuous function: extended contrast sensitivity function. Dashed func-
tion: profile of e-CSF C ′ (ṡ, zctr (s, o)) with zctr (x, y; s, o) = 0.75. Dashed-dotted function:
profile of Cmin(ṡ). Dotted line: values above this value implies brightness contrast, and
values below it implies brightness assimilation.

9
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CIWaM takes an input image I and decomposes it into a set of wavelet planes ωs,o

of different spatial scales s (i.e., spatial frequency ν) and spatial orientations o. It is

described as

I =
n∑

s=1

∑

o=v,h,dgl

ωs,o + cn , (2.3)

where n is the number of wavelet planes, cn is the residual plane and o is the spatial

orientation either vertical, horizontal or d iagonal.

The perceptual image Iρ is recovered by weighting these ωs,o wavelet coefficients

using the extended Contrast Sensitivity Function (e-CSF, Fig. 2.2). The e-CSF is

an extension of the psychophysical CSF (28) considering spatial surround information

(denoted by r), visual frequency (denoted by ν, which is related to spatial frequency

by observation distance) and observation distance (d). Perceptual image Iρ can be

obtained by

Iρ =
n∑

s=1

∑

o=v,h,dgl

α(ν, r) ωs,o + cn , (2.4)

where α(ν, r) is the e-CSF weighting function that tries to reproduce some perceptual

properties of the HVS. The term α(ν, r) ωs,o ≡ ωs,o;ρ,d can be considered the perceptual

wavelet coefficients of image I when observed at distance d and is written as:

α(ν, r) = zctr · Cd(ṡ) + Cmin(ṡ) . (2.5)

This function has a shape similar to the CSF and the three terms that describe it are

defined as:

zctr Non-linear function and estimation of the central feature contrast relative to its

surround contrast, oscillating from zero to one, defined by:

zctr =

[
σcen
σsur

]2

1 +
[

σcen
σsur

]2 (2.6)

being σcen and σsur the standard deviation of the wavelet coefficients in two

concentric rings, which represent a center−surround interaction around each co-

efficient.
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2.2 Chromatic Induction Wavelet Model: Brief description.

Cd(ṡ) Weighting function that approximates to the perceptual CSF, emulates some

perceptual properties and is defined as a piecewise Gaussian function (27), such

as:

Cd(ṡ) =





e
− ṡ2

2σ2
1 , ṡ = s− sthr ≤ 0,

e
− ṡ2

2σ2
2 , ṡ = s− sthr > 0.

(2.7)

Cmin(ṡ) Term that avoids α(ν, r) function to be zero and is defined by:

Cmin(ṡ) =

{
1
2 e

− ṡ2

2σ2
1 , ṡ = s− sthr ≤ 0,

1
2 , ṡ = s− sthr > 0.

(2.8)

taking σ1 = 2 and σ2 = 2σ1. Both Cmin(ṡ) and Cd(ṡ) depend on the factor

sthr, which is the scale associated to 4cpd when an image is observed from the

distance d with a pixel size lp and one visual degree, whose expression is defined

by Equation 2.9. Where sthr value is associated to the CSF maximum value.

sthr = log2

(
d tan(1◦)

4 lp

)
(2.9)

(a) Original image (b) d=30 cm. (c) d=100 cm. (d) d=200 cm.

Figure 2.3: (a) Original color image Lenna . (b)-(d) Perceptual images obtained by
CIWaM at different observation distances d.

Fig. 2.3 shows three examples of CIWaM images Lenna, calculated by Eq. (2.4)

for a 19 inch monitor with 1280 pixels of horizontal resolution, at d = {30, 100, 200}
centimeters.
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2.3 CIWaM weighted Peak Signal-to-Noise Ratio

In the referenced image quality problem, there is an original image f(i, j) and a dis-

torted version f̂(i, j) = Λ[f(i, j)] that is compared with f(i, j), being Λ a distortion

model. The difference between these two images depends on the characteristics of both

the original image f(i, j) (for example, spatial resolution, spatial frequencies, etc) and

the distortion model Λ (for example, blurring, contrast change, noise, lossy compres-

sion, JPEG2000 compression, etc).

(a) (b)

Figure 2.4: Diagonal spatial orientation of the first wavelet plane, Images Baboon(a) and
Splash(b) distorted by JPEG2000, PSNR=30dB.

Take the images Babbon and Splash compressed by JPEG2000 at PSNR=30 dB

(Fig. 2.1). These two images have the same PSNR when compared to their corre-

sponding original image, that is, they have the same numerical degree of distortion (i.e.

the same numerical image quality PSNR). But, in contrast, their perceptual quality is

clearly different, showing the image Baboon a better visual quality (i.e. it looks more

similar to the original uncompressed image). Thus, PSNR numerical image quality and

perceptual image quality do not correlate. On the image Baboon , high spatial fre-

quencies are dominant. A modification of these high spatial frequencies by Λ induces

a numerical distortion (i.e. a lower PSNR) but, in contrast, the modification of these

high frequencies are not perceived by the HVS (i.e. we would expect a high PSNR).

In contrast, on image Splash, mid and low frequencies are dominant. Modification of

mid and low spatial frequencies also introduces a numerical distortion, but they are

perceived by the HVS. This is the reason that, in this example, PSNR and perceptual

image quality of these two images do not correlate. Fig. 2.4 shows the diagonal high

12



2.3 CIWaM weighted Peak Signal-to-Noise Ratio

spatial frequencies of these two images, where they are more important frequencies in

image Baboon.

Thus, given a particular distortion model (in the previous example, a JPEG2000

compression process at PSNR=30 dB) the visual perceptual quality of a distorted image

f̂(i, j) depends on the characteristics of original image f(i, j).

If we generate a set of distortions f̂k(i, j) = Λk[f(i, j)] indexed by k (for example, let

Λ be a blurring operator) we can study how the image quality of f̂k(i, j) evolves while

varying k, being k, for example, the degree of blurring. Depending on the characteristics

of the original f(i, j) image, the evolution of f̂k(i, j) will be different. For example, if

f(i, j) contains many high spatial frequencies the PSNR will rapidly decrease when

increasing k. In contrast, if f(i, j) mainly contains low frequencies the PSNR will

decrease slowly.

Similarly, the HVS is considered as a system that induces a distortion on the ob-

served image f(i, j). Hence, taking CIWaM as a mathematical model of the HVS, it is

taken as a particular distortion model Λ ≡ CIWaM that generates a perceptual image

f̂(i, j) ≡ Iρ from an observed image f(i, j) ≡ I, i.e Iρ = CIWaM [I]. Similarly, a set

of distortions is defined as Λk ≡ CIWaMd, being d the observation distance. That is,

we define a set of perceptual images Iρ,d = CIWaMd[I] which are considered a set of

perceptual distortions of image I.

When images f(i, j) and f̂(i, j) are simultaneously observed at distance d and this

distance is reduced, we are able to better perceive the differences between them. In

contrast, if they are observed from a far distance we are not able to perceive their

differences, i.e. in this case the perceptual image quality of the distorted image is

always high. The distance where the observer is not able to perceive any difference

between this two images should be d = ∞. But, in practice, for similar enough images,

the distance d = D where differences cannot be perceived ranges from some centimeters

to few meters. Obviously, the more similar the two observed images, the smaller the

distance D. In other words, the more similar f(i, j) and f̂(i, j) (i.e. the highest the

image quality of f̂(i, j)), the smaller the distance D.

Since CIWaM is a model of the HVS, in the following section CIWaM is used to

find distance D.

13
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2.3.1 Methodology

Let f(i, j) and f̂(i, j) = Λ[f(i, j)] be an original image and a distortion version of

f(i, j), respectively. In addition, we want to estimate the perceptual image quality of

f̂(i, j) compared to f(i, j). The CwPSNR algorithm (graphically represented in Fig.

2.5) for assessing the perceptual image quality is defined by five general steps:

Figure 2.5: Methodology for PSNR weighting by means of CIWaM.

Step 1: Wavelet Transformation Wavelet transform of images f(i, j) and f̂(i, j) is

performed using Eq. (3.5), obtaining the sets {ωs,o} and {ω̂s,o}, respectively. The

employed analysis filter is the Daubechies 9-tap/7-tap filter (Table 2.1).

Table 2.1: 9/7 Analysis Filter.

Analysis Filter

i Low-Pass High-Pass

Filter hL(i) Filter hH(i)

0 0.6029490182363579 1.115087052456994

±1 0.2668641184428723 -0.5912717631142470

±2 -0.07822326652898785 -0.05754352622849957

±3 -0.01686411844287495 0.09127176311424948

±4 0.02674875741080976

Step 2: Distance D The total energy measure or the deviation signature(52) ε̄ is the

14



2.3 CIWaM weighted Peak Signal-to-Noise Ratio

absolute sum of the wavelet coefficient magnitudes, defined by (60)

ε̄ =
N∑

n=1

M∑

m=1

|x(m,n)| (2.10)

where x(m,n) is the set of wavelet coefficients, whose energy is being calculated,

being m and n the indexes of the coefficients.

Basing on the traditional definition of a calorie, the units of ε̄ are wavelet calories

(wCal) and can also be defined by means of the Equation 2.10, since a wCal is

the energy needed to increase the absolute magnitude of a wavelet coefficient by

one scale.

From wavelet coefficients {ωs,o} and {ω̂s,o} the corresponding perceptual wavelet

coefficients {ωs,o;ρ,d} = α(ν, r) · ωs,o and {ω̂s,o;ρ,d} = α(ν, r) · ω̂s,o are obtained by

applying CIWaM with an observation distance d. Their corresponding energies

ερ(d) and ε̂ρ(d) are also obtained.

The relative energy ratio εR(d) between these two wavelet coefficient sets are

defined by

εR(d) = 10 ·
∣∣∣∣log10

ερ(d)
ε̂ρ(d)

∣∣∣∣ . (2.11)

Fig. 2.6(b) shows an example of function εR when d varies from 0 to ∞ centime-

ters.

The peak nP at the εR function is the distance nP where the relative ratio of

the two energies is maximum. εR(d) means measuring the relative energy ratio

when both images are observed at distance d. At increasing distances the ratio

is lower, until in d = ∞ the energies are equal. Our metrics is based on finding

a lineal approximation to the distance D where the wavelet energies of the two

images should be the same, that is, εR (D) ≈ 0.

This is achieved by projecting the point (nP, εR(nP)) along the line that joins

it with the point (d, εR(d)) to the point (D, 0). Thus, distance D is the sum of

distances nP and εmL

D = nP + εmL . (2.12)
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(a) Portrayal of distances employed by the

CwPSNR algorithm.

(b) Relative Energy function εR.

Figure 2.6: Definition of distances D, nP and εmL both graphically (a) and in the εR

function (b).

where εmL is the needed distance to match the energies from the point where

the observer has the best evaluation of the assessed images to D and is defined

by

εmL =
εR(d)

dεR + σ
, (2.13)

where dεR is the energy loss rate (wCal/cm) between (nP, εR (nP)) and (d, εR (d)),

i.e. the negative slope of the line joining these points

dεR =
εR(nP)− εR(d)

d− nP
. (2.14)

When the two images are the same (for example, f̂(i, j) is a lossless version of

f(i, j)), f(i, j) = f̂(i, j), hence dεR = 0 and εmL →∞. In order to numerically

avoid it, parameter σ is introduced, which is small enough to not affect the
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estimation of εmL when dεR 6= 0 (particularly, in our MatLab implementation

σ = realmin).

Step 3: Perceptual Images Obtain the perceptual wavelet coefficients {ωs,o;ρ,D} =

α(ν, r) · ωs,o and {ω̂s,o;ρ,D} = α(ν, r) · ω̂s,o at distance D, using Equation 2.4.

Step 4: Inverse Wavelet Transformation Perform the Inverse Wavelet Transform

of {ωs,o;ρ,D} and {ω̂s,o;ρ,D}, obtaining the perceptual images fρ(i,j),D and f̂ρ(i,j),D,

respectively. The synthesis filter (Table 2.2) is an inverse Daubechies 9-tap/7-tap

filter.
Table 2.2: 9/7 Synthesis Filter.

Synthesis Filter

i Low-Pass High-Pass

Filter hL(i) Filter hH(i)

0 1.115087052456994 0.6029490182363579

±1 0.5912717631142470 -0.2668641184428723

±2 -0.05754352622849957 -0.07822326652898785

±3 -0.09127176311424948 0.01686411844287495

±4 0.02674875741080976

Step 5: Obtain CwPSNR Calculate the PSNR between perceptual images fρ(i,j),D

and f̂ρ(i,j),D using Eq. (2.2) in order to obtain the CIWaM weighted PSNR i.e.

the CwPSNR.

2.3.2 Discussion

In this section we analyze the implications of three concepts of the CwPSNR algorithm;

i.e. the εR(nP) value, the distance D and the relation between these two points and

the observation distance d. In short; first, the shape of the εR function (and its value at

εR(nP)) gives a first assessment of the image quality, second, the shorter the distance

D the better the predicted perceptual image quality, and finally when the HVS assesses

the quality of an image, it depends on, among many parameters, the interaction of the

points nP and d. Thereby the HVS evaluation of image quality is in a dynamic way,

taking into account not only the observation distance but also the point where the

observer can better perceive the distortions among images.

For visually illustrating some of these characteristics, some images from the Miscel-

laneous volume of the University of Southern California, Signal and Image Processing
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Institute image database (USC-SIPI image database, Figures A.5 and A.6) are used(2).

All the distortions are implemented using JPEG2000 compression.

2.3.2.1 First Sub-indicator: εR(nP)

When several distorted versions of the same original image are compared with the

latter, the shape of the εR functions of these images gives an approximation of the

perceived quality of them. When the εR function is close to the horizontal axis (e.g. it

is close to zero), the distorted image have a high image quality because there are few

differences, at any distance, between it and the original image. For example, Figures

2.7 and 2.8 show that the images with PSNR=40 dB have a εR (nP) lower than the

ones with PSNR=30 dB.

(a)

(b) PSNR=30dB (c) PSNR=40dB

Figure 2.7: (a) Relative Energy function εR of Image Splash, distorted by JPEG2000
with (b) PSNR=30dB and (c) PSNR=40dB.

Thus, in the particular case where different distorted versions of the same original

image are analyzed, the εR(nP) value can be considered a first approximation to a
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(a)

(b) PSNR=30dB (c) PSNR=40dB

Figure 2.8: Relative Energy function εR of Image Baboon (a), distorted by JPEG2000
with (b) PSNR=30dB and (c) PSNR=40dB.

perceptual image quality metrics.

For example, in Figure 2.9 images Baboon and Splash, indexed by 1 and 2 respec-

tively, are distorted with PSNR=30 dB. We can see that εR (nP1) < εR (nP2). This

clearly shows that the distorted image Baboon1 has better perceptual image quality the

one of Splash2 and would not be needful to know either their respective distances D1

and D2 or PSNR of perceptual images at those distances. But if D would be computed,

Splash2 would need of half of meter after the observation point in order to not perceive

the differences between original image and distorted one, while only ten centimeters

would be necessary for Baboon1.

2.3.2.2 Second Sub-indicator: D

There are cases where εR(nP) is not an accurate quality estimation. For example, in

Fig. 2.10, the relative energy ratio εR (nP2) of image Sailboat on Lake (Fig. 2.10(c))

19



2. FULL-REFERENCE QUALITY ASSESSMENT USING A
PERCEPTUAL CHROMATIC INDUCTION MODEL. APPLICATION
TO JPEG AND JPEG2000 IMAGES

(a) Relative Energy Chart

(b) D1=130.36cm

CwPSNR=36.60dB

(c) D2=167.46cm

CwPSNR=32.21dB

Figure 2.9: Relative Energy Chart of Images Baboon and Splash (a), which are distorted
by means of JPEG2000 PSNR=30dB and Observation Distance d=120cm. Perceptual
quality CwPSNR is equal to 36.60dB for (b) and 32.21dB for (c).

is twice the εR (nP1) of image Tiffany (Fig. 2.10(b)), but image Sailboat on Lake

has a better perceptual quality. Moreover, the PSNR of these two images is 31 dB.

However, when nP1 is projected along d1 to D1, D1 > D2, that is, the distorted version

of Tiffany1 needs to be observer further than the Sailboat on Lake2 image in order

to perceive the same energy of its original image. It means that Tiffany1 has a lower

image quality.

Thus, distance D is a good approximation to an image quality estimator when the

PSNR of the two images is the same.

2.3.2.3 Third Sub-indicator: CwPSNR Metrics

Although, in general, D is a good approximation to image quality, there are situations

where D is not a definitive image quality estimator. For example, in Fig. 2.10(c)
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(a)

(b) D1=141.45cm

CwPSNR=34.82dB

(c) D2=129.67cm

CwPSNR=36.77dB

Figure 2.10: Relative Energy function εR of Images Tiffany and Sailboat on Lake (a), dis-
torted by JPEG2000 PSNR=31dB and observation distance d=120cm. Perceptual quality
CwPSNR is (b) 34.82dB and (c) 36.77dB.

Sailboat on Lake2 and Fig. 2.11(b) Splash1 have practically the same D distance, e.g.

D2 = D1 = 129cm, but subjective quality of Splash1 is clearly better than the one of

Sailboat on Lake2.

The CwPSNR solution we present here to compare the perceptual quality of two

images is to calculate the numerical quality (i.e. the PSNR) of their perceptual versions

at distances D1 and D2. This way, CwPSNR predicts the image quality of an image at

the distance D where the perceptual energy of the distorted image is linearly estimated

to be equal to the perceptual energy of the original image. As shown in following

sections, this approach allows us to estimate and compare the image quality of different

images with different PSNR.

In the previous example, D is not a good image quality estimator. Now, we can

see that the perceptual quality of Fig. 2.11(b) is correctly predicted by CwPSNR to be
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twice less (∼ 3dB) than the perceptual image quality of Fig. 2.10(c).

(a)

(b) D1=129.10cm

PSNR=35.88dB

(c) D2=135.89cm

PSNR=31.74dB

Figure 2.11: Relative Energy function εR of Images Splash and Baboon, distorted by
JPEG2000 with CwPSNR=39.69 dB and observation distance d=120cm. Objective quality
PSNR (b) 35.88dB and (c) 31.74dB.

2.4 Experimental Results

In this section, CwPSNR performance is compared with the psychophysical results ob-

tained by human observers when judging the visual quality of some image databases.

The results obtained by human observers are expressed in Mean Opinion Scores ei-

ther diferencial (DMOS) or not (MOS). Hence, CwPSNR is tested across four image

databases that supply the perceived image quality:

1. Tampere Image Database (TID2008) of the Tampere University of Technology,

presented by Ponomarenko et.al. in (38, 39).
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2. Image Database of the Laboratory for Image and Video Engineering (LIVE) of

University of Texas at Austin (45).

3. Categorical Subjective Image Quality Image Database (CSIQ) of the Oklahoma

State University(22).

4. Image and Video-Communication Image Database (IVC) of the Université de

Nantes(23).

TID2008 Database contains 25 original images (Fig. A.2). They are distorted by

17 different types of distortions, and each distortion has 4 degrees of intensity, that

is, there are 68 distorted versions for every original image. TID2008 also supplies

subjective ratings by comparing original and distorted images by 654 observers from

Italy, Finland and Ukraine. Thus, for JPEG and JPEG2000 compression distortions,

there are 200 (25 images × 2 distortions × 4 distortion degrees) images in the database.

The rating of the perceptual image quality is presented using the MOS index.

LIVE Database contains 29 original images (Fig. A.3), with 26 to 29 altered versions

for every original image. In addition, rating of perceptual quality for distorted images

is given in DMOS values. Concretely, LIVE includes 234 and 228 distorted images for

JPEG and JPEG2000 compression degradation, respectively.

IVC Database includes 10 original images (Fig. A.1) with 4 different distortions

(JPEG, JPEG2000, LAR coding and Blurring) and 5 distortion degrees, that is, there

are 50 degraded images by distortion. Perceptual ratings are reported by DMOS.

CSIQ Database includes 30 original images (Fig. A.4), which are distorted by 6

different types of distortions at 4 or 5 degrees. This way, for JPEG and JPEG2000

compression distortions, CSIQ Database contains 150 distorted versions of these two

degradations. CSIQ Database has 5000 perceptual evaluations of 25 observers and its

assessments are reported in DMOS values.

In this work,we use the JPEG and JPEG2000 distortions.

2.4.1 Performance Measures

Strength of Relationship (SR) indicates how strong is the correlation between two vari-

ables. The SR analyzes how strong is the tendency of two variables to move in the

same (opposite) direction. Pearson Correlation Coefficient (PCC) is the most common
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measure for SR when parametric data are used. But in the case of the correlation of

non-parametric data the most common indicator is Spearman Rank-Order Correlation

Coefficient (SROCC) . Since image quality metrics obtained from human observers

have no lineal relationship, it is not convenient to employ PCC, since even PSNR

and MSE are the same metrics, PCC calculates different values. SROCC is a better

choice for measuring SR between the opinion of observers and the results of a given

metrics. However, when SROCC is used for testing a null hypothesis that is finally

rejected, it is difficult to interpret (17). The Kendall Rank-Order Correlation Coef-

ficient (KROCC) corrects this problem by reflecting SR between compared variables.

Furthermore KROCC and it allows to estimate how similar are two rank-sets against

the same object set. KROCC is interpreted as the probability to rank two sets in the

same order taking into account the number of inversions of pairs of objects for trans-

forming one rank into the other(1). Thus, KROCC shows an accurate assessment of

SR between a metric and the opinion of an human observer. One of the limitations of

KROCC is its complexity, which is higher than PCC and SROCC.

Furthermore, CwPSNR is compared with some state of the art numerical image qual-

ity estimators. Concretely, CwPSNR is compared to MSE(18), PSNR(18), SSIM(44),

MSSIM(53), VSNR(12), VIF(57), VIFP(44), UQI(54), IFC(46), NQM(14), WSNR(25)

and SNR.

We chose for each for evaluating these assessments the implementation provided in

(21), since it is based on the parameters proposed by the author of each indicator.

CwPSNR is implemented considering:

• Gamma correction: Before CIWaM is applied to images, we apply a gamma

correction γ = 2.2.

• Observation distance: Taking into account the observation distances of the several

databases, we take d=8H, being H the height of a 512×512 pixel image presented

in an Msize LCD monitor with horizontal resolution of hres pixels and vres pixels of

vertical resolution. For the experiments in this Section: Msize = 19′′, hres = 1280

and vres = 1280.

• Wavelet Transform: Images are decomposed into three wavelet planes, that is

n = 3, (Eq. 3.5).
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2.4 Experimental Results

2.4.2 Overall Performance

Table 2.3: KROCC of CwPSNR and other quality assessment algorithms on multiple
image databases using JPEG distortion. Bold and italicized entries represent the best
and the second-best performers in the database, respectively. The last column shows the
KROCC average of all image databases.

Image Database
Metrics TID2008 LIVE CSIQ IVC All

Images 100 234 150 50 534

MSE 0.7308 0.7816 0.6961 0.5187 0.6818
PSNR 0.7308 0.7816 0.6961 0.5187 0.6818
SSIM 0.7334 0.8287 0.7529 0.6303 0.7363

MSSIM 0.7580 0.8435 0.8097 0.7797 0.7977
VSNR 0.7344 0.8149 0.7117 0.5827 0.7109
VIF 0.7195 0.8268 0.8287 0.7911 0.7915

VIFP 0.7004 0.8140 0.8188 0.6763 0.7524
UQI 0.5445 0.7718 0.6990 0.6254 0.6602
IFC 0.5909 0.7767 0.7644 0.8158 0.7369

NQM 0.7142 0.8269 0.7907 0.6664 0.7495
WSNR 0.7300 0.8181 0.8020 0.6959 0.7615
SNR 0.6035 0.7735 0.6942 0.4481 0.6298

CwPSNR 0.7616 0.8457 0.8473 0.8335 0.8220

Table 2.3 shows the KROCC values for CwPSNR and the other twelve image quality

estimators, for all the databases and using a JPEG compression distortion. Last column

of Table 2.3 shows the performance obtained taking all the images (e.g. 534) from the

cited image databases. Bold and italicized values represent the best and the second

best performance assessments, respectively. CwPSNR is the best performer in all the

databases and also on the union of them (last column). MSSIM is the second best-

ranked metrics not only in all databases but also on their union, except for the CSIQ

database where VIF is the second best. On the union of all the databases, CwPSNR

correlation is 0.0243 higher than MSSIM and improves the performance of PSNR or

MSE by 0.1402 for JPEG compression degradation.

Table 2.4 shows the performance of CwPSNR and the same twelve metrics for

JPEG2000 compression distortion. In this case, CwPSNR is also the best metrics for all

the databases. On the union of all the databases, our algorithm is again the best one.

For this distortion, MSSIM is also the second best indicator for TID2008, LIVE and
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Table 2.4: KROCC of CwPSNR and other quality assessment algorithms on multiple
image databases using JPEG2000 distortion. Bold and italicized entries represent the best
and the second-best performers in the database, respectively. The last column shows the
KROCC average of all image databases.

Image Database
Metrics TID2008 LIVE CSIQ IVC All

Images 100 228 150 50 528

MSE 0.6382 0.8249 0.7708 0.7262 0.7400
PSNR 0.6382 0.8249 0.7708 0.7262 0.7400
SSIM 0.8573 0.8597 0.7592 0.6916 0.7919

MSSIM 0.8656 0.8818 0.8335 0.7821 0.8408
VSNR 0.8042 0.8472 0.7117 0.6949 0.7645
VIF 0.8515 0.8590 0.8301 0.7903 0.8327

VIFP 0.8215 0.8547 0.8447 0.7229 0.8110
UQI 0.7415 0.7893 0.6995 0.6061 0.6602
IFC 0.7905 0.7936 0.7667 0.7788 0.7824

NQM 0.8034 0.8574 0.8242 0.6801 0.7913
WSNR 0.8152 0.8402 0.8362 0.7656 0.8143
SNR 0.5767 0.8055 0.7665 0.6538 0.7006

CwPSNR 0.8718 0.8837 0.8682 0.7981 0.8555

IVC image databases in addition to the databases union. For CSIQ image database,

VIFP is the second best. We can see that global CwPSNR correlation is 0.0143 higher

than MSSIM. Furthermore, CwPSNR improves the correlation of PSNR by 0.1155.

In summary, CwPSNR is the best image quality estimation algorithm for JPEG and

JPEG2000 compression distortions, that is, for image compression algorithms that use

either Discrete Cosine Transform or Wavelet Transform as a method of pixel transfor-

mation in samples for the quantization process (50, pg. 14).
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Chapter 3

Image Coder Based on Hilbert

Scanning of Embedded quadTrees

3.1 Introduction

One of the biggest challenges of image compressors is the massive storage and ordering

of data coordinates. In some algorithms, like EZW (43), SPIHT (41) and SPECK (34,

35, 36), the execution path defines the correct order of the coefficients by comparison

of its branching points (51). Our coder makes use of a Hilbert Scanning, which exploits

the self-similarity of pixels. Since the space-filling path of Hilbert’s fractal is known a

priori, it implicitly defines the coefficient coordinates. Hence, the decoder only needs

the coefficient magnitudes in order to recover them. Furthermore, applying a Hilbert

Scanning to Wavelet Transform coefficients takes the advantage of the self-similarity

of neighbor pixels, helping to exploit their redundancy and to develop an optimal

progressive transmission coder. In this way, at any step of the decoding process the

quality of the recovered image is the best that can be achieved for the number of bits

processed by the decoder up to that moment.

Figure 3.1 shows the block diagram of Hi-SET image compressor for the encoding

and decoding processes. The source image data may contain one or more components

(up to 23 in the case of Hi-SET). Each component is decomposed by a discrete wavelet

transform into a set of wavelet planes of different spatial frequencies and orientations.

Wavelet plane coefficients are quantized with a dead-zone uniform scalar quantizer

(SQ) for reducing the precision of data in order to make them more compressible. This
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Figure 3.1: General block diagram of a generic compressor that uses Hi-SET for encoding
and decoding.

Quantization block introduces distortion and is only employed for lossy compression.

In the following step, Hi-SET algorithm encodes the entropy among quantized coeffi-

cients, obtaining an output bitstream. The decompression process is the inverse of the

compression one: the bitstream is entropy decoded by Hi-SET, dequantized by SQ and

an inverse discrete wavelet transform is performed, getting as a result the reconstructed

image data.

3.2 Component Transformations

Image compression algorithms are usually used in color images. These images can

be numerically represented in several color spaces, such as RGB, Y CbCr, Y CM , and

HSB, being RGB the most commonly used.

Figure 3.2: Hi-SET multiple component encoder.

In this way, an RGB color image is decomposed into three components, namely

Red, Green, and Blue color components. RGB color components are statistically more

dependent between them that than Y CrCb color components. Figure 3.2 depicts that
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3.3 Wavelet Transform

when Hi-SET performs a color compression, a complete encoding is developed at each

color layer. R, G and B color components are statistically more dependent than Y ,

Cr and Cb, thus the chrominance channels can be processed independently at lower

resolution than luminance one in order to achieve better compression rates (58).

Hi-SET supports both Reversible Component Transformation (RCT) and Irre-

versible Component Transformation(ICT) (10, Annex G). For lossy coding is employed

an ICT, which makes use of the the 9/7 irreversible wavelet transform, forward and

inverse are calculated by the Equation 3.1 and 3.2, respectively (47, 50).

[
Y

Cb

Cr

]
=

[
0.299 0.587 0.114

−0.16875 −0.33126 0.5

0.5 −0.41869 −0.08131

][
R

G

B

]
(3.1)

[
R

G

B

]
=

[
1.0 0 0.114

1.0 −0.34413 −0.71414

1.0 1.772 0

][
Y

Cb

Cr

]
. (3.2)

RCT is used for lossy and lossless codding, together with the 5/3 reversible wavelet

transform. The forward RCT transformations is achieved by means of the Equation

3.3 while the inverse by the Equation 3.4.
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[
Y

Cb

Cr

]
(3.4)

3.3 Wavelet Transform

The input image I used by Hi-SET is separated into different spatial frequency and

orientation components using a multiresolution discrete wavelet decomposition (DWT)

either reversible or irreversible (3, 48). Thus I is decomposed into a set of wavelet

planes ω of different spatial frequencies, where each wavelet plane contains details at

different spatial resolutions and it is described by:

DWT {I} =
n∑

s=1

∑

o=v,h,d

ωo
s + cn (3.5)
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where s = 1, . . . , n, n the number of wavelet planes and cn the residual plane. o = v, h, d

represents the spatial orientation either vertical, horizontal or diagonal, respectively.

The DWT is performed in order to filter each row and column of I with a high-pass

and low-pass filter. Since this procedure derives in double the number of samples, the

output from each filter is downsampled by 2, thus the sample rate remains constant. It

is not important if the rows or the columns of the component matrix are filtered first,

because the resulting DWT is the same. The reversible transformation is implemented

by means of 5/3 filter. The analysis and the respective synthesis filter of coefficients

are described by the Table 3.1. The irreversible transform is implemented by means of

the 9/7 filter and Table 3.2 illustrates its analysis and synthesis filters.

Table 3.1: 5/3 Analysis and Synthesis Filter.

Analysis Filter

i Low-Pass High-Pass

Filter hL(i) Filter hH(i)

0 6/8 1

±1 2/8 -1/2

±2 -1/8

Synthesis Filter

i Low-Pass High-Pass

Filter hL(i) Filter hH(i)

0 1 6/8

±1 1/2 -2/8

±2 -1/8

Table 3.2: 9/7 Analysis and Synthesis Filter.

Analysis Filter

i Low-Pass High-Pass

Filter hL(i) Filter hH(i)

0 0.6029490182363579 1.115087052456994

±1 0.2668641184428723 -0.5912717631142470

±2 -0.07822326652898785 -0.05754352622849957

±3 -0.01686411844287495 0.09127176311424948

±4 0.02674875741080976

Synthesis Filter

i Low-Pass High-Pass

Filter hL(i) Filter hH(i)

0 1.115087052456994 0.6029490182363579

±1 0.5912717631142470 -0.2668641184428723

±2 -0.05754352622849957 -0.07822326652898785

±3 -0.09127176311424948 0.01686411844287495

±4 0.02674875741080976
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3.4 Dead-zone Uniform Scalar Quantizer

The number of filtering stages, i.e. the number n of wavelet planes, depends on its

implementation. Nevertheless, taking into account the trade-off between image quality

and compression ratio, some authors report that the best results are obtained with

n = 3 (41).

Figure 3.3 depicts the DWT generation of the Y component the image Pepperswith

n = 3.

Figure 3.3: Three-level wavelet decomposition of the Peppers image.

3.4 Dead-zone Uniform Scalar Quantizer

Marcellin et.al. summarize in (24), among other, the uniform scalar quantizer. This

quantizer is described as a function that maps each element of a subset of the real

numbers into a particular value, which ensures that more zeros result. This way, quan-

tization values are uniformly spaced by step size ∆ except for the interval containing

the zero value, which is called the dead-zone, that extends from −∆ to +∆. Thus, a

dead-zone means that the quantization range around 0 is 2∆.

Taking a given wavelet plane ωo
s , a particular quantizer step size ∆o

s is used to

quantize all the coefficients in that spatial frequency s and orientation o. Hence a
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particular quantized index is defined as:

q = sign(y)
⌊ |y|

∆o
s

⌋
(3.6)

where y is the input to the quantizer (i.e., the original wavelet coefficient value), sign(y)

denotes the sign of y and q is the resulting quantized index. Figure 3.4 illustrates such a

quantizer with step size ∆, here vertical lines indicate the endpoints of the quantization

intervals and heavy dots represent reconstruction values.

The inverse quantizer or the reconstructed ŷ is given by

ŷ =





(q + δ)∆o
s, q > 0

(q − δ)∆o
s q < 0

0, q = 0
(3.7)

where δ is a parameter often set to place the reconstruction value at the centroid of

the quantization interval and varies form 0 to 1.

Figure 3.4: Dead-zone uniform scalar quantizer with step size ∆: vertical lines indicate
the endpoints of the quantization intervals and heavy dots represent reconstruction values.

The International Organization for Standardization recommends to adopt the mid-

point reconstruction value, setting δ = 0.5 (10). Experience indicates that some small

improvements can be obtained by selecting a slightly smaller value. Pearlman and Said

in (34) suggest δ = 0.375, especially for higher frequency subbands (e.g. high frequency

wavelet planes). It is important to realize that when −∆ < y < ∆, the quantizer level

and reconstruction value are both 0. Since it is known that many coefficients in a

wavelet transform are close to zero (usually those of higher frequencies), it implies that

they are on the dead-zone, thus the quantizer is going to set them to q=0.

Thus taking a wavelet plane ∆o
s, an array of quantized coefficients is obtained

for further losslessly encoding, since the image degradations are induced only by the

Quantization process.
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3.5 The Hi-SET Algorithm

3.5 The Hi-SET Algorithm

3.5.1 Startup Considerations

3.5.1.1 Hilbert space-filling Curve

The Hilbert curve is an iterated function that can be represented by a parallel rewriting

system, concretely a L-system. In general, a L-system structure is a tuple of four

elements:

1. Alphabet : the variables or symbols to be replaced.

2. Constants: set of symbols that remain fixed.

3. Axiom or initiator : the initial state of the system.

4. Production rules: how variables are replaced.

In order to describe the Hilbert curve alphabet let us denote the upper left, lower

left, lower right, and upper right quadrants as W, X, Y and Z, respectively, and the

variables as U (up, W → X → Y → Z), L (left, W → Z → Y → X), R (right,

Z → W → X → Y), and D (down, X → W → Z → Y). Where → indicates a movement

from a certain quadrant to another. Each variable represents not only a trajectory

followed through the quadrants, but also a set of 4m transformed pixels in m level.

The structure of our Hilbert Curve representation does not need fixed symbols,

since it is just a linear indexing of pixels.

(a) (b)

Figure 3.5: First three levels of a Hilbert Curve. (a) Axiom = D proposed by David
Hilbert in (16). (b) Axiom = U employed in this work.

The original work by David Hilbert (16) proposes an axiom with a D trajectory

(Figure 3.5(a)), while we propose to start with an U trajectory (Figure 3.5(b)). Our

proposal is based on the most of the image energy, is concentrated where the higher
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subbands with lower frequencies are, namely at the upper-left quadrant. The first three

levels are portrayed in left-to-right order by Figure 3.5.

The production rule of the Hilbert Curve is defined by

• U is changed by the string LUUR

• L by ULLD

• R by DRRU

• D by RDDL.

In this way high order curves are recursively generated replacing each former level

curve with the four later level curves.

The Hilbert Curve has the property of remaining in an area as long as possible

before moving to a neighboring spatial region. Hence, correlation between neighbor

pixels is maximized, which is an important property in image compression processes.

The higher the correlation at the preprocessing, the more efficient the data compression.

3.5.1.2 Linear Indexing

A linear indexing is developed in order to store the coefficient matrix into a vector. Let

us define the Wavelet Transform coefficient matrix as H and the interleaved resultant

vector as
−→
H, being 2γ×2γ be the size of H and 4γ the size of

−→
H, where γ is the Hilbert

curve level. Algorithm 1 generates a Hilbert mapping matrix θ with level γ, expressing

each curve as four consecutive indexes. The level γ of θ is acquired concatenating

four different θ transformations in the previous level γ − 1. Algorithm 1 generates the

Hilbert mapping matrix θ, where
−→
β refers a 180 degree rotation of β and βT is the

linear algebraic transpose of β. Figure 3.6(b) shows an example of the mapping matrix

θ at level γ = 3. Thus, each wavelet coefficient at H(i,j) is stored and ordered at
−→
Hθ(i,j)

,

being θ(i,j) the location index of it into
−→
H.

3.5.1.3 Significance Test

A significance test is defined as the trial of whether one coefficient from a set of coeffi-

cients achieves a predefined significance criterion. A coefficient that fulfills the criterion

is considered significant, otherwise it is considered insignificant. The significance test
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Algorithm 1: Function to generate Hilbert mapping matrix θ of size 2γ × 2γ .
Input: γ

Output: θ

if γ = 1 then1

θ =

[
1 4

2 3

]

2

else3

β = Algorithm 1 (γ − 1)4

θ =

[
βT (β̃)T + (3× 4γ−1)

β + 4γ−1 β + (2× 4γ−1)

]

5

also defines how these subsets are formed and what are the coefficients considered

significant.

With the aim of recovering the original image at different qualities and compression

ratios, it is not needed to sort and store all the coefficients
−→
H but just a subset of

them: the subset of significant coefficients. Those coefficients
−→
Hi such that 2thr ≤ |−→Hi|

are called significant otherwise they are called insignificant. The smaller the thr, the

better the final image quality and the lower the compression ratio.

Let us define a bit-plane as the subset of coefficients So such that 2thr ≤ |So| <

2thr+1. The significance of a given subset So amongst a particular bit-plane is store at

Ĥsig and can be defined as:

Ĥsig =
{

1, 2thr ≤ |So| < 2thr+1

0, otherwise
(3.8)

Algorithm 2 shows how a set So is divided into four equal parts (line 6) and how

the significance test (lines 7-12) is performed, resulting in four subsets (S1, S2, S3 and

S4) with their respective significance stored at the end of Ĥsig. The subsets S1, S2,

S3 and S4 are 2 × 1 cell arrays. The fist cell of each array contains one of the four

subsets extracted from So (Si (1)) and the second one stores its respective significance

test result (Si (2)).

3.5.2 Coding Algorithm

Similarly to SPIHT and SPECK (34, 35), Hi-SET considers three coding passes: Initial-

ization, Sorting and Refinement, which are described in the next subsections. SPIHT

uses three ordered lists, namely the list of significant sets (LIS), the list of insignificant
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Algorithm 2: Subset Significance Test.
Data: So, thr

Result: S1, S2, S3, S4 and Ĥsig

γ= log4(length of So)1

The cell 1 of the subsets S1, S2, S3 and S4 is declared with 4γ−1 elements, while the cell 2 with just one2

element.

i = 13

Ĥsig is emptied.4

for j=1 to 4γ do5

Store So
[
from j to

(
i× 4γ−1

)]
into Si(1).6

if 2thr ≤ max |Si(1)| < 2thr+1 then7

Si(2) = 18

Add 1 at the end of the Ĥsig .9

else10

Si(2) = 011

Add 0 at the end of the Ĥsig .12

i and j are incremented by 1 and 4γ−1, respectively.13

pixels (LIP ), and the list of significant pixels (LSP ). The latter represents just the in-

dividual coefficients, which are considered the most important ones. SPECK employs

two of these lists, the LIS and the LSP. In contrast, Hi-SET makes use of only one

ordered list, the LSP.

Using a single LSP place extra load on the memory requirements of the coder,

because the total number of significant pixels remains the same even if the coding

process is working in insignificant branches. That is why we employ spare lists, storing

significant pixels in several sub-lists. This smaller lists have the same length than

significant coefficients found in the processed branch. With the purpose of speeding up

the coding process, Hi-SET uses not only spare lists, but also spare cell arrays, both

are denoted by an apostrophe, LSP ′, Ĥ′ or S′1, for instance.

3.5.2.1 Initialization Pass

The first step in this stage is to define threshold thr as

thr =
⌊
log2

(
max

{−→
H

})⌋
, (3.9)

that is, thr is the maximum integer power of two not exceeding the maximum value of
−→
H.
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The second step is to apply Algorithm 2 with thr and
−→
H as input data, which

divides
−→
H into four subsets of 4γ−1 coefficients and adds their significance bits at the

end of Ĥ.

3.5.2.2 Sorting Pass

Algorithm 3 shows a simplified version of the classification or sorting step of the Hi-SET

Coder. The Hi-SET sorting pass exploits the recursion of fractals. If a quadtree branch

is significant it moves forward until finding an individual pixel, otherwise the algorithm

stops and codes the entire branch as insignificant.

Algorithm 3: Sorting Pass
Data: S1, S2, S3, S4, thr and γ

Result: LSP and Ĥ

LSP and Ĥ are emptied.1

if γ = 0 then2

for i = 4 to 1 do3

if Si(2) is significant then4

Add Si(1) at the beginning of the LSP .5

if Si(1) is positive then6

Add 0 at the beginning of the Ĥ.7

else8

Add 1 at the beginning of the Ĥ.9

else10

for i=1 to 4 do11

if Si(2) is significant then12

Call Algorithm2 with Si(1) and thr as input data and Store the results into S′1, S′2, S′3,13

S′4 and Ĥ′.
Add Ĥ′ at the end of the Ĥ.14

Call Algorithm3 with S′1, S′2, S′3, S′4, thr and γ − 1 as input data and Store the results15

into Ĥ′ and LSP ′.
Add Ĥ′ at the end of the Ĥ.16

Add LSP ′ at the end of the LSP .17

Algorithm 3 is divided into two parts: Sign Coding (lines 2 to 9) and Branch

Significance Coding (lines 11 to 16). The algorithm performs the Sign Coding by

decomposing a given quadtree branch up to level γ = 0, i.e. the branch is represented

by only 4 coefficients with at least one of them being significant. The initial value of

γ is log4(length of
−→
H) − 1. Only the sign of the significant coefficients is coded, 0

for positives and 1 for negatives. Also each significant coefficient is added into a spare

LSP or LSP ′.
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The Branch Significance Coding calls the Algorithm 2 in order to quarter a branch

in addition to call recursively an entire sorting pass at level γ − 1 up to reach the

elemental level when γ = 0. The Significance Test results of a current branch (obtained

by the Algorithm 2) and the ones of next branches (acquired by Algorithm 3, denoted

as Ĥ′) are added at the end of Ĥ. Also, all the significant coefficients found in previous

branches (all the lists LSP ′) are added at the end of the LSP . This processes is

repeated for all four subsets of
−→
H.

3.5.2.3 Refinement Pass

At the end of Ĥ, the (thr − 1)-th most significant bit of each ordered entry of the

LSP, including those entries added in the last sorting pass, are added. Then, thr is

decremented and another Sorting Pass is performed. The Sorting and Refinement steps

are repeated up to thr = 1.

The decoder employs the same mechanism as the encoder, since it knows the fractal

applied to the original image. When the bitstream Ĥ is received, by itself describes the

significance of every variable of the fractal. Then with these bits, the decoder is able

to reconstruct both partially and completely, the same fractal structure of the original

image, refining the pixels progressively as the algorithm proceeds.

3.5.3 A Simple Example

In order to highlight the operations employed by Hi-SET, a simple example is shown.

The wavelet transform coefficient matrix H of an 8× 8 pixels image is depicted in

Figure 3.6(a), which is a three scale (n = 3) transformation, which implies γ = 3. The

indexed vector
−→
H (Figure 3.6(c)) is acquired interleaving H with a three-level matrix

θ (Figure 3.6(b)).

Table 3.3 shows the entire process up to the first bit-plane. The eleven steps in

Table 3.3 represent the three passes of the scheme. Initialization Pass is described by

steps 1 and 2, Sorting Pass by steps 3-10, while step 11 illustrates Refinement Pass.

Figure 3.7 depicts the fractal partitioning diagram of the first bit-plane encoding.

The following remarks refer to steps of the Table 3.3:

Step 1 The largest coefficient magnitude inside
−→
H is 63, thus the initial threshold,

defined by the Equation 3.9, is thr = 5 (i.e. 25 = 32). It implies that the first
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bit-plane is placed at (−64,−32] and [32, 64). Both LSP and Ĥ are emptied and

level γ = 3 is adopted by the axiom (3U).

Step 2 Using the production rules, a 3U curve changes to 2LUUR. At the first bit-

plane, the 2L and 2U curves are subsets of 42 pixels, where at least one is signifi-

cant, in this case 63, −34 and 49 for 2L (e.g. upper left quadrant) and 47 for 2U

(lower left quadrant). The other two curves, 2U and 2R, have only insignificant

coefficients. Therefore the significance of these curves is 1100, which is placed at

Ĥ.

Step 3 Using the production rules, a 2L curve changes to 1ULLD. At the first bit-

plane, the 1U and 1L curves are subsets where at least one pixel is significant, in

this case 63 and −34 for 1U and 49 for 1L. The other two curves, 1L and 1D,

(a) H (b) θ

(c)
−→
H

Figure 3.6: Example of Hilbert indexing of an 8× 8 pixels image. (a) Three-scale wavelet
transform matrix H. (b) Hilbert Indexing matrix θ when γ = 3. (c) Interleaved resultant
vector

−→
H.

Figure 3.7: Fractal partitioning diagram of the first bit-plane encoding, using Hi-SET
scheme.
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Table 3.3: The First bit-plane encoding using Hi-SET scheme. H, θ and
−→
H are taken

from Figure 3.6, with initial threshold thr = 5.

Step Former Current Bitstream Decoded

Curve Curve(s) Ĥ LSP

1 3U

2 3U 2LUUR 1100

3 2L 1ULLD 1100

4 1U SIIS 1001

5 sign +− 01 +32 −32

6 1L SIII 1000

7 sign + 0 +32 −32 +32

8 2U 1LUUR 0001

9 1R IIIS 0001

10 sign + 0 +32 −32 +32 +32

11 ref. 1010 +48 −32 +48 +32

have only insignificant coefficients. Therefore the significance of these curves is

1100, which is placed at Ĥ.

Step 4 The 1U curve represents 41 pixels, e.g. 63, −31, 23 and −34, which are signif-

icant (S), insignificant (I), insignificant and significant coefficients, respectively.

Thereby, the significance of this curve is 1001, which is placed at Ĥ.

Step 5 At 1U only the signs of 63 and −34 are coded. Thus, sign bits for these pixels

are 01, which are placed at Ĥ. Furthermore, 63 and −34 are laid into the LSP .

Step 6 From Step 3, the 1L curve represents 41 pixels, e.g. 49 (S), 10 (I), −13 (I) and

14 (I). Thus, the significance bits in this curve are 1000, which are placed at Ĥ.

Step 7 At 1L only the sign of 49 is coded. Thus, sign bit for this pixel is 0, which is

placed at Ĥ. Furthermore, 49 is laid into the LSP .

Step 8 From Step 2, using the production rules, a 2U curve changes to 1LUUR. At the

first bit-plane, the first three curves 1L, 1U and 1U are subsets with insignificant

coefficients, while the last one 1R has at least one significant pixel, in this case

only 47. Therefore the significance of these curves is 0001, which is placed at Ĥ.

Step 9 The 1R curve represents 41 pixels, e.g. 2 (I), −3 (I), −1 (I) and 47 (S). Thus,

the significance bits in this curve are 0001, which are placed at Ĥ.
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Step 10 At 1R only the sign of 47 is coded. Thus, sign bit for this pixel is 0, which is

placed at Ĥ. Furthermore, 47 is laid into the LSP .

Step 11 The encoded LSP contains four ordered entries: 63(111111), −34(100010),

49(110001) and 47(101111). At the end of Ĥ is added the second most signif-

icant bits of each entry of the encoded LSP, i.e. 1010. Therefore, when the

bitstream Ĥ is received by the decoder, it recovers a LSP with the following

values: +48(110000), −32(100000), +48(110000) and +32(100000). Binary mag-

nitudes in parentheses are in absolute value beacuse the sign bits are encoded (or

decoded) previously.

3.6 Hi-SET Codestream Syntax

The Hi-SET Codestream Syntax is a compressed representation of image data that

contains all parameters used in the encoding process and is also a lineal stream of

bits. This bitstream is mainly divided into two consecutive groups: Headers and the

Ĥ obtained in the coding process (Figure 3.8).

Figure 3.8: Hi-SET Codestream Syntax.

Headers are subdivided in groups of Markers. We consider two types: Manda-

tory and Complemental Headers. Figure 3.9(a) shows the structure of the Mandatory

Header, that is a 16 bit fixed size substream. This Header is fractionated in six Markers,

namely Imagesize, thrmax, wlev, Channels, wfilter and Qstep , described as:

Imagesize (4 bits). If this marker is different to zero means that the processed image

is squared with both height and width equal to 2Imagesize+1. Thus the overall size

of a square image varies from 42 to 416 pixels. Otherwise when Imagesize = 0000

the markers Imageheight and Imagewidth of the Complemental Header are used

for establishing the image size.
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thrmax (4 bits). It stores the maximum threshold thr−1 defined in eq (3.9), hence, its

value varies from 1 to 16. Thus, Hi-SET can process an image up to 16 bit-planes.

wlev (3 bits). This marker contains the number of spatial frequencies minus one per-

formed by the wavelet transform, thus its value varies from 1 to 8 wavelet spatial

frequencies.

Channels (3 bits). The number of image (color) components minus one is stored in

this marker, thus managing up to eight components.

wfilter (1 bit). If it is one, a 9/7 wavelet filter is used, otherwise a 5/3 filter is employed.

Qstep (1 bit). It indicates whether the coefficients are quantized or not. If they are

quantized, the size of Quantization steps ∆o
s are placed in a marker at the end of

the Complemental Header.

(a) Mandatory Header.

(b) Complemental Header.

Figure 3.9: Hi-SET Headers with their Markers.

Figure 3.9(b) shows the Complemental Header, which is formed by three consecutive

Markers: two for storing the size of a non-squared image and the other one for the

quantization steps.

Imageheight (16 bits). It contains the height of a non-squared image. Hence, an image

up to 65535 pixel height can be supported.

Imagewidth (16 bits). It contains the width of a non-squared image. Hence, an image

up to 65535 pixel width can be supported.
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Qstepsorientation and frequencies (64-400 bits). This marker is a collection of several sub-

markers. Hi-SET can use a quantization step ∆o
s for every spatial frequency

(indexed by s) and spatial orientation (indexed by o) for a wavelet plane ωs,o, in

addition to another one for the residual plane cwlev+1.

Since the Codestream of Hi-SET supports up to wlev + 1 spatial frequencies and

three spatial orientations, there are 3× wlev + 4 quantization steps.

Each quantization step is represented by a two-byte long sub-marker, which is

divided in three parts: Sign, Exponent εo
s and Mantissa µo

s (Figure 3.10).

The most significant bit of the sub-marker is the sign of ∆o
s, whether 0 for positive

or 1 for negative. The ten least significant bits are employed for the allocation of

µo
s, which is defined by (10) as:

µo
s =

⌊
210

(
∆o

s

2Ro
s−εo

s
− 1

)
+

1
2

⌋
(3.10)

Equation (3.11) expresses how εo
s is obtained, which is stored at the 5 remaining

bits of the ∆o
s sub-marker

εo
s = Ro

s − dlog2 |∆o
s|e (3.11)

where Ro
s is the number of bits used to represent the peak coefficient inside ωo

s ,

defined as

Ro
s = dlog2 [max {ωo

s}]e . (3.12)

Figure 3.10: Structure of the ∆o
s Sub-marker.
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3.7 Experiments and Numerical Results

The aim of this section is to show how much error is introduced by Hi-SET during the

compression process. Quality of the recovered image is obtained by comparing it to the

original image.

3.7.1 Comparison with Hilbert Curve based algorithms

Hi-SET has some resemblances with other image compression algorithms, concretely

we are interested in those developed by Kim and Li (20) and Biswas (9). Similarly

to them, Hi-SET maximizes the correlation between pixels using a Hilbert scanning.

The differences between Hi-SET and these methods are that Hi-SET is an embedded

algorithm and also proposes a coding scheme, while the Kim and Li and Biswas methods

are not embedded because the entropy is encoded by a Huffman coder.

Figure 3.11 shows the comparison between these two algorithms and Hi-SET. This

comparison has been performed only for the case of the image Lenna because it is the

only result reported by these authors.

Figure 3.11(a) shows the PSNR difference between Hi-SET and Kim and Li al-

gorithm as a function of the bpp. On the upper horizontal axis we show the PSNR

obtained at the bpp shown on the lower horizontal axis. On average, Hi-SET reduces

PSNR in 4.75 dB (i.e. reduces the Mean Square Error around 63.07 %).

Similarly, Figure 3.11(b) shows the difference between Hi-SET and Biswas algo-

rithm. On average, Hi-SET diminishes the MSE in 84.66% (8.15 dB). For example, the

quality of a Hi-SET compressed image stored at 22.4 KB (0.70 bpp) is 36.37 dB, while

the Biswas algorithm obtains 28.73 dB, that is, 7.65 dB less.

Thus, on average our method improves the image quality of these two Hilbert fractal

based methods in approximately 6.20 dB.

3.7.2 Comparing Hi-SET and JPEG2000 coders

An image compression system is a set of processes with the aim of representing the

image with a string of bits, keeping the length as small as possible. These processes are

mainly Transformation, Quantization and Entropy Coding. For the sake of compar-

ing the performance between the JPEG2000 standard entropy coder (50) and Hi-SET
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(a) Kim and Li algorithm

(b) Biswas algorithm

Figure 3.11: Performance comparison (PSNR difference) between Hi-SET and the algo-
rithms proposed by and , for a gray-scale image Lenna. On the upper part of the figures
we show the PSNR obtained at the bpp shown on the lower part.

entropy coder, the entropy coding is isolated from the rest of the subprocess of the com-

pression system. This way, a subset of wavelet coefficients are selected from the original

source image data Iorg such that Iorg ≥ 2thr−bpl+1, being bpl the desired bit-plane and
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thr the maximum threshold

thr =
⌊
log2

(
max
(i,j)

{∣∣∣Iorg(i,j)

∣∣∣
})⌋

. (3.13)

These selected coefficients are inverse wavelet transformed in order to create a new

source of image data, i.e. I′org, which are losslessly compressed, that is until the last

bit-plane, by each coder. Figure 3.12 depicts this process. The software used to perform

JPEG2000 compression is Kakadu (49) and JJ2000 (40). The irreversible component

transformation (ICT, Y CbCr) is used in addition to the 9/7 irreversible wavelet trans-

form.

Figure 3.12: Bit-plane selection. Some coefficients are selected provided that they fulfil
the current threshold.

Hi-SET is tested on the 24 bit color images of Tampere Image Database (TID2008)(39),

which contains 24 images (Figure A.2). All images in the database are 512×384 pixels.

The fixed size of all images is obtained by cropping selected fragments of this size from

the original images.
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The compression algorithms are evaluated in five experiments: low resolution gray-

scale images, medium resolution gray-scale images, low resolution color images, medium

resolution color images and high resolution gray-scale images.

Experiment 1. Low resolution gray-scale images. In order to test the image

coders in the worst possible conditions, the image database is transformed and

resized into gray-scale images (Y component) of 128× 96 pixels. The less pixels

an image contains, the less redundancies can be exploited on it. Figure 3.13 shows

the quality of the recovered images as a function of their compression rate. On

the average, an image with 30 dB is compressed by JPEG2000 coder (dashed

function) at 1.59 bpp (1:5.04 compression ratio) in 2.38 KBytes and by Hi-SET

(continuous function) at 1.10 bpp (1:7.3 ratio) in 1.64 KBytes. In Figure 3.14

we can see this differences when the image kodim18 is compressed at 0.8 bpp by

JPEG2000 and Hi-SET, being the latter 2.36 dB better. In general, for 128× 96

gray-scale images the JPEG2000 coder compresses either 0.551 bpp less or stores

847 Bytes more than Hi-SET with the same objective visual quality. At the same

compression rate Hi-SET is 1.84 dB better.

Figure 3.13: Comparison between Hi-SET and JPEG2000 image coders. Experiment 1:
Compression rate vs image quality of the 128× 96 gray-scale image database.

Experiment 2 Medium resolution gray-scale images. In this experiment, the

source image data both for the JPEG2000 standard coder and Hi-SET algo-

rithms are the selected images from the TID2008 (Figure A.2) transformed into
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(a) JPEG2000 23.99 dB (b) Hi-SET 26.35 dB

Figure 3.14: Experiment 1. Example of 128×96 reconstructed image kodim18 compressed
at 0.8 bpp (Y Component).

gray-scale images (Y component). Figure 3.15 shows the average quality of the

recovered images as a function of compression rate, for both JPEG2000 (dashed

function) and Hi-SET (continuous function). Hi-SET improves the image quality

in approximately 0.427 dB with the same compression rate, or the bit-rate in

approximately 0.174 bpp with the same image quality. It implies saving around

4.18 KBytes for 512× 384 pixels gray-scale images. On average, a 512× 384 im-

age compressed by JPEG2000 with 30 dB needs 19.8 KBytes at 0.827 bpp, while

Hi-SET needs 5.75 KBytes less at 0.587 bpp. The difference in visual quality be-

tween JPEG2000 and Hi-SET when the image kodim23 is compressed at 0.2 bpp

can be seen in Figure 3.16. The image quality of the recovered image coded by

JPEG2000 (a) is 2.74 dB lower than the one obtained by Hi-SET(b).

Experiment 3. Low resolution color images. As previously explained, the image

database is resized (performing a cropping process) to 128 × 96 pixels images.

They are transformed into the Y CbCr color space (the one used by JPEG2000).

Figure 3.17 shows the PSNR of recovered images as a function of compression

rate. On the average, an image compressed by Hi-SET(continuous function)

with 34 dB is stored in 4.87 KBytes at 3.25 bpp, while using JPEG2000 (dashed

function) it is stored in 6.76 KBytes at 4.51 bpp. In Figure 3.18 we can see these

differences when image kodim06 is compressed at 1.4 bpp by JPEG2000 standard

(a) and Hi-SET(b). Thus, at the same compression rate, Hi-SET obtains a better
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Figure 3.15: Comparison between Hi-SET and JPEG2000 image coders. Experiment 2:
Compression rate vs image quality of the original image database in gray-scale.

(a) JPEG2000 27.05 dB (b) Hi-SET 29.79 dB

Figure 3.16: Experiment 2. Example of 512 × 384 reconstructed image kodim23 com-
pressed at 0.2 bpp (Y Component).

image quality (up to 2.26 dB better) than JPEG2000 coder. On avergage, Hi-SET

compresses either 0.925 bpp or saves 1.39 KBytes more than the JPEG2000 coder

with the same statistical error induced by the coding process or 1.43 dB with the

same compression rate.

Experiment 4. Medium resolution color images. In this fourth experiment, tests

are made on the selected images of the Kodak test set transformed into Y CbCr

color space (it is the color space used by JPEG2000). Figure 3.19 shows the rela-
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Figure 3.17: Comparison between Hi-SET and JPEG2000 image coders. Experiment 3:
Compression rate vs image quality of the 128× 96 color image data base.

(a) JPEG2000 25.99 dB (b) Hi-SET 28.25 dB

Figure 3.18: Experiment 3. Example of 128×96 reconstructed image kodim06 compressed
at 1.4 bpp (Y , Cb and Cr Components).

tion between compression rate and average quality. On average, a 512×384 image

compressed by Hi-SET(continuous function) with 35 dB is stored in 46.8 KBytes

at 1.95 bpp, while JPEG2000 (dashed function) stores it in 53.2 KBytes at

2.22 bpp. In Figure 3.20 we can see the difference when the image kodim04 is

compressed at 0.4 bpp by JPEG2000 (a) and Hi-SET(b). At the same compres-

sion ratio, Hi-SET improves image quality by 1.83 dB. On average Hi-SET either

compresses 0.33 bpp more with the same image quality or reduces in 1.06 dB

the error with the same bit-rate. Thus, Hi-SET saves 7.9 KBytes more than the
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JPEG2000 standard for 512× 384 color images.

Figure 3.19: Comparison between Hi-SET and JPEG2000 image coders. Experiment 4:
Compression rate vs image quality of the original color image data base.

(a) JPEG2000 28.53 dB (b) Hi-SET 30.36 dB

Figure 3.20: Experiment 4. Example of 512 × 384 reconstructed image kodim04 com-
pressed at 0.4 bpp (Y , Cb and Cr Components).

Experiment 5. High resolution gray-scale images. This experiment is performed

in order to test the Hi-SET compression performance with high resolution images.

We use th e Y component of image Bicycle (19). Table 3.4 shows the PSNR

obtained by JPEG2000 and Hi-SET at 0.25, 0.50 and 0.75 bpp. On average,

images recovered by JPEG2000 are 3.16 dB lower than the ones decoded by

Hi-SET. Figure 3.21 shows image Bicycle compressed both by JPEG2000 (a)

51



3. IMAGE CODER BASED ON HILBERT SCANNING OF
EMBEDDED QUADTREES

and Hi-SET(b) at 0.38 bpp (e.g. 1:21.05), which is stored in 243 KBytes. The

right column of Figure 3.21 shows bottom left squared sections of 512×512 pixels.

These regions are cropped to ease the visual inspection of the differences between

algorithms. On the other hand, left column displays recovered images in their

original size. This Figure shows that the image processed by Hi-SET has a better

visual quality (it reduces the mean squared error in 80.41 percent in comparison

to JPEG2000).

Table 3.4: Comparison of lossy encoding by JPEG2000 standard and Hi-SET for the
image Bicycle.

bpp (rate) JPEG2000 Hi-SET

PSNR in dB’s PSNR in dB’s

0.25 (32:1) 19.08 23.82

0.50 (16:1) 24.91 28.00

0.75 (10.67:1) 29.65 31.30

Hi-SET and JPEG2000 are also compared with some state of the art numerical im-

age quality estimators. Concretely, Hi-SET and JPEG2000 performances are compared

using MSE(18), PSNR(18), SSIM(44), MSSIM(53), VSNR(12), VIF(57), VIFP(44),

UQI(54), IFC(46), NQM(14), WSNR(25) SNR and CwPSNR(Section 2.3.1). This

comparison is made across the image databases: CMU (Sec. A.5), CSIQ(Sec. A.4),

IVC(Sec. A.1), LIVE(Sec. A.3) and TID2008(Sec. A.2), for color and gray-scale (Y

Channel) compression. But in this Section, only CwPSNR results are exposed, Fig.

3.22, the rest of metrics can be shown in Annex B. Thus, Fig. 3.22 also demonstrates

that Hi-SET significantly improves the results of JPEG2000 coder.
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(a) JPEG2000 19.48 dB

(b) Hi-SET 26.56 dB

Figure 3.21: Experiment 5. Examples of 2048× 2560 reconstructed image Bicycle com-
pressed at 0.38 bpp (Y Component).
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(a) CMU gray-scale (b) CMU color

(c) CSIQ gray-scale (d) CSIQ color

(e) IVC gray-scale (f) IVC color

(g) LIVE gray-scale (h) LIVE color

(i) TID2008 gray-scale (j) TID2008 color

Figure 3.22: Comparison between JPEG2000 vs Hi-SET image coders. Compression
rate vs perceptual image quality, performed by CwPSNR, of the CMU (a-b), CSIQ (c-d),
CMU (e-f), LIVE (g-h) and TID2008 (i-j) image databases. In left column is shown the
gray-scale compression of all image databases, while the right one color compression is
depicted.

54



Chapter 4

Perceptual Quantization

4.1 Introduction

Digital image compression has been a research topic for many years and a number of im-

age compression standards has been created for different applications. The JPEG2000

is intended to provide rate-distortion and subjective image quality performance supe-

rior to existing standards, as well as to supply functionality (10). However JPEG2000

does not provide the most relevant characteristics of the human visual system, since

for removing information in order to compress the image mainly information theory

criteria are applied. This information removal introduces artifacts to the image that

are visible at high compression rates, because of many pixels with high perceptual

significance have been discarded.

Hence it is necessary an advanced model that removes information according to

perceptual criteria, preserving the pixels with high perceptual relevance regardless of

the numerical information. The Chromatic Induction Wavelet Model presents some

perceptual concepts that can be suitable for it. Both CIWaM and JPEG2000 use

wavelet transform. CIWaM uses it in order to generate an approximation to how every

pixel is perceived from a certain distance taking into account the value of its neigh-

boring pixels. By contrast, JPEG2000 applies a perceptual criteria for all coefficients

in a certain spatial frequency independently of the values of its surrounding ones. In

other words, JPEG2000 performs a global transformation of wavelet coefficients, while

CIWaM performs a local one.

CIWaM attenuates the details that the human visual system is not able to perceive,
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enhances those that are perceptually relevant and produces an approximation of the

image that the brain visual cortex perceives. At long distances, as Figure 2.3(d) depicts,

the lack of information does not produce the well-known compression artifacts, rather it

is presented as a softened version, where the details with high perceptual value remain

(for example, some edges).

4.2 JPEG2000 Global Visual Frequency Weighting

In JPEG2000, only one set of weights is chosen and applied to wavelet coefficients

according to a particular viewing condition (100, 200 or 400 dpi’s) with fixed visual

weighting(10, Annex J.8). This viewing condition may be truncated depending on the

stages of embedding, in other words at low bit rates, the quality of the compressed image

is poor and the detailed features of the image are not available since at a relatively large

distance the low frequencies are perceptually more important.

The table 4.1 specifies a set of weights which was designed for the luminance com-

ponent based on the CSF value at the mid-frequency of each spatial frequency. The

viewing distance is supposed to be 4000 pixels, corresponding to 10 inches for 400 dpi

print or display. The weight for LL is not included in the table, because it is always 1.

Levels 1, 2, . . . , 5 denote the spatial frequency levels in low to high frequency order

with three spatial orientations, horizontal, vertical and diagonal.

Table 4.1: Recommended JPEG2000 frequency weighting for 400 dpi’s

s horizontal vertical diagonal

1 1 1 1

2 1 1 0.731 668

3 0.564 344 0.564 344 0.285 968

4 0.179 609 0.179 609 0.043 903

5 0.014 774 0.014 774 0.000 573
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4.3 Perceptual Forward Quantization

4.3.1 Methodology

Quantization is the only cause that introduces distortion into a compression process.

Since each transform sample at the perceptual image Iρ (from Eq. 2.4) is mapped

independently to a corresponding step size either ∆s or ∆n, thus Iρ is associated with

a specific interval on the real line. Then, the perceptually quantized coefficients Q, from

a known viewing distance d, are calculated as follows:

Q =
n∑

s=1

∑

o=v,h,d

sign(ωs,o)
⌊ |α(ν, r) · ωs,o|

∆s

⌋
+

⌊
cn

∆n

⌋
(4.1)

Unlike the classical technics of Visual Frequency Weighting (VFW) on JPEG2000,

which apply one CSF weight per sub-band (10, Annex J.8), Perceptual Quantization

through CIWaM applies one CSF weight per coefficient over all wavelet planes ωs,o.

Thus Equation 4.1 introduces the perceptual criteria of Equation 2.4 to each quantized

coefficient of Equation 3.6. A normalized quantization step size ∆ = 1/128 is used,

namely the range between the minimal and maximal values at Iρ is divided into 128

intervals. Finally, the perceptually quantized coefficients are entropy coded, before

forming the output code stream or bitstream. Figure 2.3 shows three CIWaM images

of Lena, which are calculated by Equation 4.1 (∆s = 1 and ∆n = 1) for a 19 inch screen

with 1280 pixels of horizontal resolution, at 30, 100 and 200 centimeters of distance.

In this specific case, Eq.2.4 = Eq.4.1.

4.3.2 Experimental Results applied to JPEG2000

The Perceptual Local VFW in JPEG2000 is tested on all the color images of the

Miscellaneous volume of the University of Southern California Image Data Base(2).

The data sets are eight 256×256 pixel images (Fig. A.5) and eight 512×512 pixel images

(Fig. A.6), but only visual results of the well-known images Lena, F-16 and Baboon are

depicted, which are 24-bit color images and 512×512 of resolution. The CIWaM images

were calculated for a 19 inch monitor with 1280 pixels of horizontal resolution at 50

centimeters of viewing distance. The software used to obtain a JPEG2000 compression

for the experiment was JJ2000 (40).
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Figure 4.1 shows the assessment results of the average performance of color image

compression for each bit-plane using a Dead-zone Uniform Scalar Quantizer (Section

3.4, continuous function with heavy dots), and adding to it a previous quantization

step developed by CIWaM (function with heavy stars).

Figure 4.1: JPEG2000 Compression ratio by Bit-plane. Function with heavy dots:
JPEG2000 only quantized by the dead-zone uniform scalar manner. Function with heavy
stars: JPEG2000 perceptually pre-quantized by the chromatic induction wavelet model, in
addition to a dead-zone uniform scalar quantification.

CIWaM used as a method of forward quantization, achieves better compression

ratios with the same threshold, reaching better results at the highest bit-planes, since

CIWaM reduces unperceivable coefficients. Figure 4.2 shows the contribution of CIWaM

in the JPEG2000 compression ratio, for example at the eighth bit-plane, CIWaM di-

minishes 1.2423 bits per pixel less than without it, namely in a 512 × 512 pixel color

image, CIWaM estimates that 39.75KB of information is perceptually irrelevant at 50

centimeters.

Both Figure 4.3 and 4.4 depict examples of reconstructed images compressed at 0.9

and 0.4 bits per pixel, respectively, by means of JPEG2000 without (a) and with per-

ceptual pre-quantization (b). Also this figures demonstrate that the CIWaM subjective

quality is higher than the objective one.

The Figure 4.5 shows examples of reconstructed images of Baboon compressed at

0.59, 0.54 and 0.45 bits per pixel by means of JPEG2000 without (a) and with percep-

tual pre-quantization (b and c). PSNR in Fig. 4.5(a) is 26.18 dB and in Fig. 4.5(b)
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4.3 Perceptual Forward Quantization

Figure 4.2: Contribution of a CIWaM pre-quantification over the JPEG2000 compression
ratio by each Bit-plane.

(a) JPEG2000 31.19 dB. (b) JPEG2000-CIWaM 27.57 dB.

Figure 4.3: Examples of reconstructed images of Lena compressed at 0.9 bpp.

(a) JPEG2000 25.12 dB. (b) JPEG2000-CIWaM 24.57 dB.

Figure 4.4: Examples of reconstructed images of F-16 compressed at 0.4 bpp.

is 26.15 dB but a perceptual metric like WSNR (25), for example, assesses that it is

equal to 34.08 dB. Therefore, the reconstructed image pre-quantized by CIWaM is per-
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4. PERCEPTUAL QUANTIZATION

ceptually better than the one just quantized by a Scalar Quantizer, since the latter has

more compression artifacts, even the result at 0.45 bpp (Fig. 4.5(c)) has less artifacts,

showing for example that the Baboon’s eye is softer and better defined and saving ad-

ditionally 4.48 KB of information.

(a) JPEG2000 compressed at 0.59 bpp.

(b) JPEG2000-CIWaM compressed at 0.54 bpp. (c) JPEG2000-CIWaM compressed at 0.45 bpp.

Figure 4.5: Examples of reconstructed images of Baboon.

4.4 Perceptual Inverse Quantization

The proposed perceptual Quantization is a generalized method, which can be apply to

wavelet-transform-based image compression algorithm such as EZW, SPIHT, SPECK

or JPEG2000. But we introduce both forward and inverse perceptual quantization into

the Hi-SET coder. This process is shown in green by Fig. 4.6, which maintains the

embedded features not only of Hi-SET algorithm but also of any wavelet-based image

coder. Thus, Perceptual Quantization + Hi-SET = PHi-SET or ΦSET.

Figure 4.6: The ΦSET image compression algorithm.
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4.4 Perceptual Inverse Quantization

Both JPEG2000 and ΦSET choose their VFWs according to a final viewing condi-

tion. When JPEG2000 modifies the quantization step size with a certain visual weight,

needs to explicitly specify the quantizer, which is not very suitable for embedded cod-

ing. While ΦSET neither needs to store the visual weights nor to necessarily specify a

quantizer in order to keep its embedded coding properties.

The main challenge underlies in to recover not only a good approximation of coef-

ficients Q but also the visual weight α(ν, r) that weighted them. A recovered approx-

imation Q̂ with a certain distortion Λ is decoded from the bitstream by the entropy

decoding process. The VFWs were not encoded during the entropy encoding process,

since it would increase the amount of stored data. Then a possible solution is to embed

α(ν, r) into Q̂.

The reduction of the dynamic range is uniformly made by the perceptual quantizer,

thus the statistical properties of I are maintained in Q̂. Therefore our hypothesis is that

to apply CIWaM to Q̂, with the same viewing conditions applied to I, could recover a

decoded approach of the encoded visual weights, α̂(ν, r). Thus, the perceptual inverse

quantizer or the reconstructed α̂(ν, r) introduces perceptual criteria to 3.7 and is given

by:

Î =





n∑

s=1

∑

o=v,h,d

sign(ω̂s,o)
∆s · (|ω̂s,o|+ δ)

α̂(ν, r)
+ ( ĉn + δ) ·∆n |ω̂s,o| > 0

0, ω̂s,o = 0

(4.2)

For the sake of demonstrating that the encoded VFWs are approximately equal to

the decoded ones, that is α(ν, r) ≈ α̂(ν, r), we perform two experiments.

Experiment 1: Histogram of α(ν, r) and α̂(ν, r). The process of this short experi-

ment is shown in Figure 4.7. Figure 4.7a depicts the process for obtaining losslessy

both Encoded and Decoded visual weights for the 512× 512 Lena image, channel

Y at 10 meters. While Figures 4.7(b) and 4.7(c) shows the frequency histograms

of α(ν, r) and α̂(ν, r), respectively. In both graphs, the horizontal axis represents

the sort of VFW variations, whereas the vertical axis represents the number of

repetitions in that particular VFW. The distribution in both histograms is similar

and they have the same shape.
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4. PERCEPTUAL QUANTIZATION

(a) Process

(b) Encoded VW (c) Decoded VW

Figure 4.7: (a) Process to find the histograms of Encoded (b) and Decoded (c) visual
frequency weights for the 512× 512 image Lena, channel Y at 10 meters.

Experiment 2: Correlation between α(ν, r) and α̂(ν, r). We employ the process

shown in Fig. 4.7(a) for all the images of the CMU (Figs. A.5 and A.6), CSIQ(Fig.

A.4) and IVC(Fig. A.1) Image Databases. Then, we measure the lineal correla-

tion between α(ν, r) and α̂(ν, r). Table 4.2 shows that there is a hight similarity

between the applied VFW and the recovered one, since their correlation is 0.9849,

for gray-scale images, and 0.9840, for color images.

In this section, we only expose the results for the CMU image database. In Sec-

tions C.1.1 and C.1.2, we display the results for CSIQ and IVC image databases,

respectively.

Fig. 4.8 depicts the PSNR difference (dB) of each color image of the CMU

database, that is, the gain of image quality after applying α̂(ν, r) at d = 2000

62



4.4 Perceptual Inverse Quantization

Table 4.2: Correlation between α(ν, r) and α̂(ν, r) across CMU (Figs. A.5 and A.6),
CSIQ(Fig. A.4) and IVC(Fig. A.1) Image Databases.

Image 8 bpp 24 bpp
Database gray-scale color

CMU 0.9840 0.9857
CSIQ 0.9857 0.9851
IVC 0.9840 0.9840

Overall 0.9849 0.9844

centimeters to the Q̂ images. On average, this gain is about 13 dB. Visual exam-

ples of these results are shown by Fig. 4.9, where the right images are the original

images, central images are perceptual quantized images after applying α(ν, r) and

left images are recovered images before applying α̂(ν, r).

Figure 4.8: PSNR difference of each color image of the CMU database.

After applying α̂(ν, r), these sixteen recovered images seem to have perceptually

lossless quality. For the sake of prove with more results the latter affirmation,

we perform this experiment for gray-scale and color images with d = 20, 40, 60,

80, 100, 200, 400, 800, 1000 and 2000 centimeters, in addition to test their ob-

jective and subjective image quality by means of the PSNR and MSSIM metrics,
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4. PERCEPTUAL QUANTIZATION

(a) Girl 2

(b) Tiffany

(c) Peppers

Figure 4.9: Visual examples of Perceptual Quantization. Right images are the original
images, central images are perceptual quantized images after applying α(ν, r) at d = 2000
centimeters and left images are recovered images before applying α̂(ν, r).

respectively.
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4.4 Perceptual Inverse Quantization

In Figs. 4.10 and 4.11, green functions denoted as CIWaM are perceptual quan-

tized images after applying α(ν, r), while blue functions denoted as CIWaM−1

are recovered images before applying α̂(ν, r). Thus, either for gray-scale or color

images, both PSNR and MSSIM estimations of the quantized image Q decrease

with respect to d, the longer d the greater the image quality decline. When the

image decoder recovers Q̂ and it is perceptually inverse quantized, the quality

barely varies and is close to perceptually lossless, no matter the distance.

(a) PSNR (b) MSSIM

Figure 4.10: Compression of Gray-scale Images (Y Channel) of the CMU image database.
Green functions denoted as CIWaM are perceptual quantized images after applying α(ν, r),
while blue functions denoted as CIWaM−1 are recovered images before applying α̂(ν, r).

(a) PSNR (b) MSSIM

Figure 4.11: Compression of Color Images of the CMU image database. Green functions
denoted as CIWaM are perceptual quantized images after applying α(ν, r), while blue
functions denoted as CIWaM−1 are recovered images before applying α̂(ν, r).
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4. PERCEPTUAL QUANTIZATION

4.5 ΦSET Codestream Syntax

ΦSET Codestream Syntax is similar to the Hi-SET one (Section 3.6), only two Markers

are added inside Complemental Header (Fig. 3.9(b)), Perceptual Quantization Marker

(PQ) and Observation Distance Marker (d).

PQ (1 bit). If Qstep = 1, PQ would specify if the wavelet coefficients were perceptually

quantized or not. Fig. 4.12(a) shows this marker.

d (16 bits). This marker stores the observation distance d. d is represented by a two-

byte long sub-marker, which is divided in two parts: Exponent εd and Mantissa

µd (Fig. 4.12(b)).

The eleven least significant bits are employed for the allocation of µd, which is

defined as:

µd =
⌊
211

(
d

2Rdmax−εd
− 1

)
+

1
2

⌋
(4.3)

Equation (4.4) expresses how εd is obtained, which is stored at the 5 remaining

bits of the d marker

εd = Rdmax − dlog2 (d)e (4.4)

where Rdmax is the number of bits used to represent the peak permitted observa-

tion distance d < 2048H, being H the height of a 512×512 pixel image presented

in an Msize LCD monitor with horizontal resolution of hres pixels and vres pixels

of vertical resolution. Therefore, Rdmax = 11.

(a) PQ Marker (b) d Marker

Figure 4.12: Markers added to Complemental Header (Fig. 3.9(b)). (a) Perceptual
Quantization Marker and (b) Structure of Observation Distance Marker
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4.6 Experiments and Results

For the sake of comparing the performance between the JPEG2000(50) and ΦSET

coders, both algorithms are tested according to the process depicted in Fig. 4.13.

Thus, first a ΦSET compression with certain viewing conditions is performed, which

gives a certain bit-rate (bpp). Then, a JPEG2000 compression is developed with the

same bit-rate. Ones both algorithms recover their distorted images, they are com-

pared with some numerical image quality estimators such as: MSE(18), PSNR(18),

SSIM(44), MSSIM(53), VSNR(12), VIF(57), VIFP(44), UQI(54), IFC(46), NQM(14),

WSNR(25), SNR and CwPSNR(Section 2.3.1).

Figure 4.13: Process for comparing JPEG2000 and ΦSET.

(a) CMU Image Database (b) IVC Image Database

Figure 4.14: Comparison between ΦSET and JPEG2000 image coders. Compression rate
vs perceptual image quality, performed by CwPSNR, of the CMU (a) and IVC (b) image
databases.

This experiment is performed across the CMU (Section A.5) and IVC (Section A.1)

Image Databases. Image quality estimations are assessed by the thirteen metrics before

mentioned, but in this section only CwPSNR results are exposed, the remaining metrics
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4. PERCEPTUAL QUANTIZATION

are exhibited in Sections C.2.1 and C.2.2 for the CMU and IVC Image Databases,

respectively.

(a) JPEG2000, CwPSNR=34.40 dB (b) ΦSET, CwPSNR=37.81 dB

(c) JPEG2000, CwPSNR=33.42 dB (d) ΦSET, CwPSNR=38.22 dB

(e) JPEG2000, CwPSNR=32.88 dB (f) ΦSET, CwPSNR=38.10 dB

Figure 4.15: Example of reconstructed color images Lenna, Girl2 and Tiffany of the CMU
image database compressed at 0.92 bpp(a-b), 0.54 bpp(c-d) and 0.93 bpp(e-f), respectively.
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(a) JPEG2000, CwPSNR=30.87 dB (b) ΦSET, CwPSNR=31.69 dB

(c) JPEG2000, CwPSNR=27.71 dB (d) ΦSET, CwPSNR=28.86 dB

(e) JPEG2000, CwPSNR=31.74 dB (f) ΦSET, CwPSNR=33.19 dB

Figure 4.16: Example of reconstructed color images Barbara, Mandrill and Clown of
the IVC image database compressed at 0.76 bpp (a-b), 1.15 bpp (c-d) and 0.96 bpp (e-f),
respectively.

The parameters for estimating the CwPSNR assessment are: d = 8H, Msize = 19′′,
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4. PERCEPTUAL QUANTIZATION

hres = 1280 and vres = 1280.

Fig. 4.14(a) shows the perceptual quality, performed by CwPSNR, of the recovered

color images both JPEG2000 and ΦSET as a function of their compression rate. For

this experiment, we employ the CMU Image Database (Section A.5) and the Kakadu

implementation for JPEG2000 compression(49). On the average, a color image with

36 dB is compressed by JPEG2000 coder (blue function) at 2.00 bpp (1:12 compression

ratio) in 64 KBytes and by ΦSET (green function) at 1.50 bpp (1:16 ratio) in 48 KBytes.

In Figure 4.15 we can see this differences when the images Lenna, Girl2 and Tiffany

are compressed at 0.92 bpp, 0.54 bpp and 0.93 bpp, respectively, by JPEG2000 and

ΦSET. Thus, on the average for this image database, ΦSET is 2.38 dB better.

Fig. 4.14(b) shows the perceptual quality, performed by CwPSNR, of the recovered

color images both JPEG2000 and ΦSET as a function of their compression rate. For this

experiment, we employ the IVC Image Database (Section A.1) and the JJ2000 imple-

mentation for JPEG2000 compression(40). On the average, a color image compressed

at 1.5 bpp (1:16 ratio, stored in 48 KBytes) by JPEG2000 coder (blue function) has

34.70 dB of perceptual image quality and by ΦSET (green function) has 36.86 dB. In

Figure 4.16 we can see this differences when the images Barbara, Mandrill and Clown

are compressed at 0.76 bpp, 1.15 bpp and 0.96 bpp, respectively, by JPEG2000 and

ΦSET. Thus, on the average for this image database, ΦSET is 2.33 dB better.
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Chapter 5

Perceptual Generalized

Bitplane-by-Bitplane Shift

5.1 Introduction

Region of interest (ROI) image coding is a feature that modern image coder possesses,

which allows to encode an specific region in an image with better quality than the rest

or background (BG). ROI coding is one of the requirements in the JPEG2000 image

coding standard (10, 11, 47, 50) and defines two methods(4, 13, 30, 31, 50):

1. Based on general scaling

2. Maximum shift (MaxShift)

The general ROI scaling-based method scales (shift) coefficients in such a way that

the bits associated with the ROI are placed in higher bit-planes than the bits associated

with the background as shown in Figure 5.1(b). Thus, during a embedded coding

process, any background bitplane of the image is located after the most significant ROI

bitplanes into the bit-stream. But in some cases, depending on the scaling value, ϕ,

some bits of ROI are simultaneously encoded with BG. Therefore, the ROI is decoded

and refined, before the rest of the image. No matter ϕ, it is posible to reconstruct with

the entire bitstream a highest fidelity version of the whole image. Nevertheless, If the

bitstream is terminated abruptly, the ROI will have a higher fidelity than BG.

The scaling-based method is implemented in five steps:

1. Wavelet transform is calculated.

71



5. PERCEPTUAL GENERALIZED BITPLANE-BY-BITPLANE SHIFT

(a) No ROI coding (b) Scaling Based Method, ϕ = 3

Figure 5.1: Scaling based ROI coding method. Background is denoted as BG and Region
of Interest as ROI.

2. A ROI mask is defined, which indicates the set of coefficients that are necessary

for reaching a lossless ROI reconstruction, Figure 5.2.

3. The wavelet coefficients are quantized. Then, the quantized coefficients are stored

in a sign magnitude representation, using the most significant part of the preci-

sion, this will allow to downscale BG coefficients.

4. A specified scaling value, ϕ̃, downscales the coefficients inside the BG.

5. The most significant bitplanes are progressively entropy encode.

Figure 5.2: ROI mask generation, wavelet domain.

ROI scaling-based method needs as input the scaling value ϕ, while MaxShift

method calculates it. Hence, the encoder defines from quantized coefficients this scaling

value such that:

ϕ = dlog2 (max {MBG}+ 1)e (5.1)

72



5.2 Related Work

where max {MBG} is the maximum coefficient in the BG. Thus, when ROI is scaled up

ϕ bitplanes, the minimum coefficient belonging to ROI, will be place one bitplane up of

BG. Namely, 2ϕ is the smallest integer that is greater than any coefficient in the BG.

MaxShift method is shown in Figure 5.3. Bitplane mask will be explained in section

5.2.2.

Figure 5.3: MaxShift method, ϕ = 7. Background is denoted as BG, Region of Interest
as ROI and Bitplane mask as BP mask.

At the decoder side, the ROI and BG coefficients are simply identified by checking

the coefficient magnitudes. All coefficients that are higher or equal than the ϕth bit-

plane belong to the ROI otherwise they are a part of BG. Hence, it is not important to

transmit the shape information of the ROI or ROIs to the decoder. The ROI coefficients

are scaled down ϕ bitplanes before inverse wavelet transformation is applied.

5.2 Related Work

5.2.1 BbBShift

Wang and Bovik proposed the bitplane-by-bitplane shift (BbBShift) method in (59).

BbBShift shifts bitplanes on a bitplane-bybitplane strategy. Figure 5.4 shows an illus-

tration of the BbBShift method. BbBShift uses two parameters, ϕ1 and ϕ2, whose sum

is equal to the number of bitplanes for representing any coefficient inside the image,

indexing the top bitplane as bitplane 1.

During the encoding process:

1. For a given bitplane bpl with at least one ROI coefficient:
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5. PERCEPTUAL GENERALIZED BITPLANE-BY-BITPLANE SHIFT

Figure 5.4: BbBShift ROI coding method, ϕ1 = 3 and ϕ2 = 4. Background is denoted
as BG, Region of Interest as ROI and Bitplane mask as BP mask.

• If bpl ≤ ϕ1, bpl is not shifted.

• If ϕ1 < bpl ≤ ϕ1 + ϕ2, bpl is shifted down to ϕ1 + 2 (bpl − ϕ1)

2. For a given bitplane bpl with at least one BG coefficient:

• If bpl ≤ ϕ2, bpl is shifted down to ϕ1 + 2bpl − 1

• Else to ϕ1 + ϕ2 + bpl

Summarizing the BbBShift method encodes the first ϕ1 bitplanes with ROI coef-

ficients, then, BG and ROI bitplanes are alternately shifted, refining gradually both

ROI and BG of the image.

5.2.2 GBbBShift

In practice, quality refinement pattern of the ROI and BG used by BbBShift method

is similar to the general scaling based method. Thus, when the image is encoded and

this process is truncated in a specific point the quality of the ROI is high while there

is no information of BG.

Hence Wang and Bovik modified BbBShift method and proposed the generalized

bitplane-by-bitplane shift (GBbBShift) method in (55), which introduces the option

to improve visual quality either of ROI or BG or both. Figure 5.5 shows that with

GBbBShift method is posible to decode some bitplanes of BG, improving the overall

quality of the recovered image. This is posible gathering BG bitplanes. Thus, when
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the encoding process achieves the lowest bitplanes of ROI, the quality of BG could be

good enough in order to portray an approximation of BG.

Figure 5.5: GBbBShift ROI coding method. Background is denoted as BG, Region of
Interest as ROI and Bitplane mask as BP mask.

Therefore, GBbBShift gives the opportunity to arbitrary chose the order of bitplane

decoding, grouping them in ROI bitplanes and BG bitplanes. This is posible using a

binary bitplane mask or BP mask, which contains one bit per each bitplane, that is,

twice the amount of bitplanes than original image possesses. A ROI bitplane is repre-

sented by 1, while a BG bitplane by 0. For instance, the BP mask for MaxShift method

in Figure 5.3 is 11111110000000, while for BbBShift in Figure 5.4 and GBbBShift in

Figure 5.5 are 11101010101000 and 11100011110000, respectively.

At the encoder side, the BP mask has the order of shifting both the the ROI and

BG bitplanes. Furthermore, BP mask is encoded in the bitstream, while the scaling

values ϕ or ϕ1 and ϕ2 from the MaxShift and BbBShift methods, respectively, should

be transmitted.

5.3 ρGBbBShift Method

In order to have several kinds of options for bitplane scaling technics, a perceptual

generalized bitplane-by-bitplane shift(ρGBbBShift) method is proposed. ρGBbBShift

introduces to the GBbBShift method perceptual criteria when bitplanes of ROI and BG

areas are shifted. This additional feature is intended for balancing perceptual impor-

tance of some coefficients regardless their numerical importance and for not observing
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5. PERCEPTUAL GENERALIZED BITPLANE-BY-BITPLANE SHIFT

visual difference at ROI regarding MaxShift method, improving perceptual quality of

the entire image.

Thus, ρGBbBShift uses a binary bitplane mask or BPmask in the same way that

GBbBShift, Figure 5.6. At the encoder, shifting scheme is as follows:

Figure 5.6: ρGBbBShift ROI coding method. Background is denoted as BG (Quantized
at d2), Region of Interest as ROI (Quantized at d1)and Bitplane mask as BP mask.

1. Calculate ϕ using Equation 5.1.

2. Verify that the length of BPmask is equal to 2ϕ.

3. • For all ROI Coefficients, quantize them using Equation ?? with d1 as viewing

distance.

• For all BG Coefficients, quantize them using Equation ?? with d2 as viewing

distance, being d2 À d1.

4. Let τ and η be equal to 0

5. For every element i of BPmask, starting with the least significant bit:

• If BPmask(i) = 1, Shift up τ bitplanes all ROI perceptual quantized coeffi-

cients of the (ϕ− η)-th bitplane and increment η.

• Else: Shift up η bitplanes all BG perceptual quantized coefficients of the

(ϕ− τ)-th bitplane and increment τ .

At the decoder, shifting scheme is as follows:

1. ϕ = length of BPmask
2
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2. Let τ and η be equal to 0

3. For every element i of BPmask, starting with the least significant bit:

• If BPmask(i) = 1, Shift down τ bitplanes all perceptual quantized coef-

ficients, which pertain to the (2ϕ− (τ + η))-th bitplane of the recovered

image and increment η.

• Else: Shift down η bitplanes all perceptual quantized coefficients, which per-

tain to the (2ϕ− (τ + η))-th bitplane of the recovered image and increment

τ .

4. Let us denote as ci,j a given non-zero wavelet coefficient of the recovered image

with 2ϕ bitplanes and ci,j as a shifted down c obtained in the previous step, with

ϕ bitplanes.

• If (ci,j & BPmask) > 0, Dequantize ci,j using Equation 4.2 with d1 as viewing

distance.

• Else, Dequantize ci,j using Equation 4.2 with d2 as viewing distance.

5.4 Experimental Results

ρGBbBShift method, as the algorithms presented here, can be applied to many image

algorithms such as JPEG2000 or Hi-SET. We test our method applied to Hi-SET and

the results are contrasted with MaxShift method in JPEG2000. The parameter setups

are ϕ = 8 for MaxShift and BPmask = 1111000110110000, d1 = 5H and d2 = 50H,

where H is picture height (512 pixels) in a 19-inch LCD monitor. Also, we use the

Kakadu implementation when an image is compressed by JPEG2000 standard(49).

5.4.1 Experiments

Figure 5.7 shows a comparison among methods MaxShift and GBbBShift applied to

JPEG2000, in addition to, ρGBbBShift applied to Hi-SET. The 24-bpp image Barbara

is compressed at 0.5 bpp.

It can be observed that without visual difference at ROI, the ρGBbBShift method

provide better image quality at the BG than the general based methods defined in

JPEG2000 Part II(11). But the BG is perceptually better when ρGBbBShift is used.
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(a) MaxShift in JPEG2000 coder, 0.5 bpp

(b) GBbBShift in JPEG2000 coder, 0.5 bpp (c) ρGBbBShift in Hi-SET coder, 0.5 bpp

Figure 5.7: 512 × 640 pixel Image Barbara with 24 bits per pixel. ROI is a patch of
the image located at [341 280 442 442], whose size is 1/16 of the image. Decoded images
at 0.5 bpp using MaxShift method in JPEG2000 coder((a) ϕ = 8), GBbBShift method in
JPEG2000 coder ((b)BPmask = 1111000110110000) and ρGBbBShift method in Hi-SET
coder ((c)BPmask = 1111000110110000).

In order to better qualify the performance of MaxShift and ρGBbBShiftmethods,

we compress two different gray-scale images 1600, from CSIQ image database (Fig A.4),

and Lenna at different bit-rates, from 0.5 to 2 bpp. ROI area is a patch at the center

of these images, whose size is 1/16 of the image.

In the whole image quality assessment of image 1600, JPEG2000 obtains better

objective quality both for gray-scale and color images (Figures 5.8(a) and 5.8(c), re-

spectively). But when the subjective quality is estimated ρGBbBShift coded images

are perceptually better.
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(a) PSNR gray-scale (b) CwPSNR gray-scale

(c) PSNR color (d) CwPSNR color

Figure 5.8: Comparison between MaxShift method applied to JPEG2000 coder and
ρGBbBShift applied to Hi-SET coder. 512 × 512 pixel Image 1600 with 8 (a-b) and 24
(c-d) bits per pixel are employ for this experiment. ROI is a patch at the center of the
image, whose size is 1/16 of the image. The overall image quality of decoded images at
different bits per pixel are contrasted both objectively (a and c) and subjectively (b and
d).

A visual example is depicted by Figure 5.9, where it can be shown that there is no

perceptual difference between ROI areas besides the perceptual image quality at BG is

better when ρGBbBShift is applied to the Hi-SET coder.

Similarly to the results obtained with the image 1600, when a ROI area is defined in

Image Lenna, ρGBbBShift obtains less objective quality (Figures 5.10(a) and 5.10(c)),

but better subjective quality both for gray-scale and color images (Figures 5.10(b) and

5.10(d), respectively).

Figure 5.11 shows a visual example, when image Lenna is compressed at 0.34 bpp
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(a) MaxShift method in JPEG2000 coder,

0.42 bpp

(b) ρGBbBShift method in Hi-SET coder,

0.42 bpp

Figure 5.9: 512 × 512 pixel Image 1600 from CSIQ image database with 8 bits per
pixel. ROI is a patch at the center of the image, whose size is 1/16 of the image. Decoded
images at 0.42 bpp using MaxShift method in JPEG2000 coder((a) ϕ = 8) and ρGBbBShift
method in Hi-SET coder ((b)BPmask = 1111000110110000).

by JPEG2000 and Hi-SET. Thus, it can be observed that ρGBbBShift provides an

important perceptual difference regarding the MaxShift method.

5.4.2 Application in other image compression fields

The usage of ROI coded images depend on an specific application, but in some fields

such as manipulation and transmission of images is important to enhance the image

quality of some areas and to reduce it in others(7, 15). In Telemedicine or in Re-

mote Sensing (RS)is desirable to maintain the best quality of the ROI area, preserving

relevant information of BG, namely the most perceptual frequencies.

Thus, in medical applications an image is by itself a ROIφ area of the human

body, a mammography is an area of chest, for instance. That is why, it is important

to know where is located this ROIφ, for the sake of better interpreting a given ROI

coded image. In addition, according Federal laws in some countries, ROI areas must

be without losses(61). ρGBbBShiftis able to accomplish these two features.

Figure 5.12 shows an example of medical application. A rectangular ROI of the Im-
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5.4 Experimental Results

(a) PSNR gray-scale (b) CwPSNR gray-scale

(c) PSNR color (d) CwPSNR color

Figure 5.10: Comparison between MaxShift method applied to JPEG2000 coder and
ρGBbBShift applied to Hi-SET coder. 512 × 512 pixel Image Lenna with 8 (a-b) and 24
(c-d) bits per pixel are employ for this experiment. ROI is a patch at the center of the
image, whose size is 1/16 of the image. The overall image quality of decoded images at
different bits per pixel are contrasted both objectively (a and c) and subjectively (b and
d).

age mdb202 from PEIPA image database(37) , coordinates [120 440 376 696], is coded at

0.12 bpp by JPEG2000 and Hi-SET, employing MaxShift and ρGBbBShiftmethods, re-

spectively. The overall image quality measured by PSNR in Figure 5.12(a) is 37.21 dB,

while in Figure 5.12(c) is 36.76 dB. Again, PSNR does not reflect perceptual differences

between images (Figures 5.12(b) and 5.12(d)). When perceptual metrics assess the im-

age quality of the ρGBbBShift coded image, for example, VIFP=0.6359, WSNR=34.24

and CwPSNR=40.88, while for MaxShift coded image VIFP=0.3561, WSNR=31.34 and

CwPSNR=37.18. Thus, these metrics predicts that there is an important perceptual

difference between ROI methods.

81



5. PERCEPTUAL GENERALIZED BITPLANE-BY-BITPLANE SHIFT

(a) MaxShift method in JPEG2000 coder,

0.34 bpp

(b) ρGBbBShift method in Hi-SET coder,

0.34 bpp

Figure 5.11: 512 × 512 pixel Image Lenna from CMU image database with 8 bits per
pixel (a). ROI is a patch at the center of the image, whose size is 1/16 of the image.
Decoded images at 0.34 bpp using MaxShift method in JPEG2000 coder((b) ϕ = 8) and
ρGBbBShift method in Hi-SET coder ((c)BPmask = 1111000110110000).

Remote Sensing Images (RSI) are widely used in agriculture, mapping, water con-

servancy, etc. An RSI database is usually very huge in size, since the saved images have

abundant details. Thus, an important goal for compressing RSI is to code in advance,

in order to transfer and store them. However, only a small part of the image is useful

and therefore some regions are sketched(62).

Figure 5.13 shows an example of the application of ROI in Remote Sensing. Image

2.1.05, from Volumen 2: aerials of USC-SIPI image database 8 bits per pixel(2), is

compressed at 0.42 bpp. MaxShift method spends all the bit-ratio for coding ROI,

located at [159 260 384 460], while ρGBbBShift balances a perceptually lossless ROI

area with an acceptable representation of the BG. Hence, the overall image quality

measured by PSNR in Figure 5.13(a) is 16.06 dB, while in Figure 5.13(b) is 24.28 dB.

When perceptual metrics assess the image quality of the ρGBbBShift coded image,

for example, VIFP=0.4982, WSNR=24.8469 and CwPSNR=27.07, while for MaxShift

coded image VIFP=0.2368, WSNR=11.33 and CwPSNR=16.72. Thus, for this exam-

ple, both PSNR and these subjective metrics reflect important perceptual differences

between ROI methods.
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5.4 Experimental Results

(a) MaxShift method in JPEG2000 coder,

0.12 bpp

(b) Patch of (a) portrayed both ROI and BG

areas.

(c) ρGBbBShift method in Hi-SET coder,

0.12 bpp

(d) Patch of (c) portrayed both ROI and BG

areas.

Figure 5.12: Example a medial application. 1024×1024 pixel Image mdb202 from PEIPA
image database. ROI is a patch with coordinates [120 440 376 696], whose size is 1/16 of
the image. Decoded images at 0.12 bpp using MaxShift method in JPEG2000 coder((a-b)
ϕ = 8) and ρGBbBShift method in Hi-SET coder ((c-d)BPmask = 1111000110110000).
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5. PERCEPTUAL GENERALIZED BITPLANE-BY-BITPLANE SHIFT

(a) MaxShift in JPEG2000 coder, 0.42 bpp (b) ρGBbBShift method in Hi-SET coder,

0.42 bpp

Figure 5.13: Example a remote sensing application. 512 × 512 pixel Image 2.1.05 from
Volumen 2: aerials of USC-SIPI image database 8 bits per pixel. ROI is a patch with
coordinates [159 260 384 460], whose size is 225× 200 pixels. Decoded images at 0.42 bpp
using MaxShift method in JPEG2000 coder((a) ϕ = 8) and ρGBbBShift method in Hi-SET
coder ((b)BPmask = 1111000110110000).
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Chapter 6

Conclusions and Future work

The main goal of this thesis was in one hand to identify and to remove non-perceptual

information of an image, maintaining as far as possible, the same entropy as the source

image and the other hand to introduce these perceptual criteria into a proposed image

compression system. Hence, the main contributions this work are a proposal of a

perceptual image compression system and a image quality assessment.

6.1 Conclusions

In Chapter 2, we present a new metric for full-reference image quality based on per-

ceptual weighting of PSNR by using a perceptual low-level model of the Human Visual

System. The CwPSNR metrics is based on three concepts. First, the Relative Energy

Ratio, measured at the point where an observer can better perceive differences among

images, e.g. (εR (nP)). This is a good enough approximation to image quality when

different distorted versions of the same image are evaluated. Second, the distance D

where the observer can not perceive differences between the energies of distorted and

reference images. The shorter it is, the better the quality of the distorted image. It is

a good approximation to image quality when the same distortion is applied to several

images. Finally, the generalization to any image and any kind of distortion is performed

by measuring the objective numerical quality (i.e. the PSNR) of the perceptual images

predicted by CIWaM at D cm.

CwPSNR was tested in four well-known image databases such as TID2008, LIVE,

CSIQ and IVC. It is the best-ranked image quality method for JPEG and JPEG2000
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distortions when compared to several existing metrics. Concretely, it is 2.5% and 1.5%

better that MSSIM (the second best performing method) for JPEG and JPEG2000

distortions, respectively. CwPSNR significantly increases the correlation of PSNR with

perceived image quality. Since when CIWaM weights PSNR, correlation of predicting

subjective ratings either of PSNR or MSE improves the results by 14% and 11.5% for

the same kind of distortions, on the average.

Hi-SET coder, presented in Chapter 3, is based on Hilbert scanning of embedded

quadTrees. It has low computational complexity and some important properties of

modern image coders such as embedding and progressive transmission. This is achieved

using the principle of partial sorting by magnitude when a sequence of thresholds

decreases. The desired compression rate can be controlled just by chunking the stream

at the desired file length. When compared to other algorithms that use Hilbert scanning

for pixel ordering, Hi-SET improves image quality by around 6.20 dB. Hi-SET achieves

higher compression rates than JPEG2000 coder not only for high and medium resolution

images but also for low resolution ones where it is difficult to find redundancies among

spatial frequencies. Table 6.1 summarize the average improvements when compressing

the TID2008 Image Database.

Table 6.1: Average improvement of Hi-SET in front of JPEG2000

Components Y Y CbCr

Resolution Low Medium Low Medium

Compression
Ratio (bpp) 0.55 0.17 0.93 0.33

Image
Quality (dB) 1.84 0.43 1.79 1.06

Hi-SET coder improves the image quality of the JPEG2000 coder around 1.16 dB

for gray-scale images and 1.43 dB for color ones. Furthermore, it saves around 0.245 bpp

for high resolution gray-scale Bicycle images. We extended our experiments to another

four image database such as CMU, CSIQ, IVC and LIVE. Thus,the results across these

databases resulted Hi-SET improved the results not only objectively but also metrics

like MSSIM, UQI or VIF, which are perceptual indicators.
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6.2 Contributions

In Chapter 4, we proposed the incorporation both of forward and inverse quantizer

to Hi-SET using CIWaM, proposing the perceptual image compression system ΦSET. In

order to measure the effectiveness of the perceptual quantization a performance analysis

is done using thirteen assessments such as PSNR, MSSIM, VIF, WSNR or CwPSNR,

for instance, which measured the image quality between reconstructed and original

images. The experimental results show that Forward Perceptual Quantization improves

the JPEG2000 compression and image perceptual quality and impacts, on the average,

with about 20 percent. In addition, both Forward and Inverse Quantization were

applied to Hi-SET, which significatively improved the results regarding the JPEG2000

compression.

ρGBbBShift, described in Chapter 5, is generalized method, which can be applied

to any wavelet-base compressor. We introduced ρGBbBShift method to the Hi-SET

coder. Thus, our proposal visually improved the results obtained by previous method

like BbBShift and GBbBShift. In our experiments showed that ρGBbBShift provides

an important perceptual difference regarding the MaxShift method, when it is applied

not only to conventional images like Lenna but also to another image compression fields

such as Telemedicine or Remote Sensing.

6.2 Contributions

The main contribution od this Ph.D thesis are:

• Definition of a metrics that uses the loss of perceptual energy as tool of assessing

the image quality. This indicator can be considered as a set of three gauges, which

can be used for different purposes.

• Demonstration that CIWaM operates correctly on natural images and inside the

field of image compression.

• Development of a perceptual quantizer algorithm , unlike the JPEG2000 global

Frequency weighting, our method quantizes locally, that is pixel-by-pixel. Simi-

larly JPEG2000, it is not necessary store the applied weighting for inverse quan-

tizing, this is because CIWaM properties permits to predict perceptual weighting

a posteriori.
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• Development of a image coder, which is a serious alternative of JPEG2000 ex-

ploiting the recursion of fractal, avoiding the massive storage of pixel coordinates.

• Proposal of a new method for coding of Regio of Interest areas, which can be

applied to any wavelet based compression scheme.

6.3 Future Work

CwPSNR is mainly developed for estimation of perceptual image quality, but its usage

can be extended to other applications such as image quantization in image compression

algorithms, optimizing the perceptual error under the constraint of a limited bit-budget.

Since the CIWaM algorithm apply a perceptual weighting to every wavelet coefficient,

it can quantize a particular coefficient during the bit allocation procedure, allowing to

define a perceptual bit allocation algorithm. Hence, CwPSNR can be incorporated into

embedded compression schemes such as EZW(43), SPIHT(41), JPEG2000 (47) and

Hi-SET (26).

We are currently exploring extensions of CwPSNR to non-referenced or blind image

quality assessment and perceptual rate allocation for the Hi-SET coder.

In addition to propose a image compression algorithm that makes use of a threshold

based on the e-CSF properties, namely a threshold based on the perceptual importance

of a coefficient, regardless of its numerical value.
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Appendix A

Image Databases

A.1 Image and Video-Communication Image Database

IVC Database includes 10 original images (Fig. A.1) with 4 different distortions (JPEG,

JPEG2000, LAR coding and Blurring) and 5 distortion degrees, that is, there are 50

degraded images by distortion(23).

Figure A.1: Tested 512 × 512 pixel 24-bit color images, belonging to the IVC Image
database.

A.2 Tampere Image Database

TID2008 Database contains 25 original images (Fig. A.2). They are distorted by 17

different types of distortions, and each distortion has 4 degrees of intensity, that is,
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there are 68 distorted versions for every original image (38, 39).

Figure A.2: Tested 512 × 384 pixel 24-bit color images, belonging to the Tampere test
set.
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A.3 Image Database of the Laboratory for Image and Video Engineering

A.3 Image Database of the Laboratory for Image and

Video Engineering

LIVE Database contains 29 original images (Fig. A.3), with 26 to 29 altered versions

for every original image. LIVE includes 234 and 228 distorted images for JPEG and

JPEG2000 compression degradation, respectively(45).

Figure A.3: Set of 29 tested images of 24-bit color, belonging to the LIVE Image database.

91



A. IMAGE DATABASES

A.4 Categorical Subjective Image Quality Image Database

CSIQ Database includes 30 original images (Fig. A.4), which are distorted by 6 different

types of distortions at 4 or 5 degrees. CSIQ Database has 5000 perceptual evaluations

of 25 observers(22).

Figure A.4: Tested 512 × 512 pixel 24-bit color images, belonging to the CSIQ Image
database.
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A.5 University of Southern California Image Database

A.5 University of Southern California Image Database

The University of Southern California Image Data Base, Miscellaneous volume(2). The

database contains eight 256× 256 pixel images (Figure A.5) and eight 512× 512 pixel

images (Figure A.6)(2).

Figure A.5: Tested 256× 256 pixel 24-bit Color Images, obtained from the University of
Southern California Image Data Base.

Figure A.6: Tested 512× 512 pixel 24-bit Color Images, obtained from the University of
Southern California Image Data Base.
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Appendix B

JPEG2000 vs Hi-SET:

Complementary Results of

Chapter 3

B.1 University of Southern California Image Database
B.1.1 Gray-Scale (Y Channel)

Compression of Gray-Scale Images vs Image Quality Assessment. Green functions

represent results obtained by Hi-SET coder, while blue functions by JPEG2000 coder.

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.1: Gray-Scale CMU Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.
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B. JPEG2000 VS Hi-SET: COMPLEMENTARY RESULTS OF
CHAPTER 3

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.2: Gray-Scale CMU Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.3: Gray-Scale CMU Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.
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B.1 University of Southern California Image Database

B.1.2 Color Images

Compression of Color Images vs Image Quality Assessment. Green functions represent

results obtained by Hi-SET coder, while blue functions by JPEG2000 coder.

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.4: Color CMU Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.5: Color CMU Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.

97



B. JPEG2000 VS Hi-SET: COMPLEMENTARY RESULTS OF
CHAPTER 3

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.6: Color CMU Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.

B.2 Categorical Subjective Image Quality Image Database

B.2.1 Gray-Scale (Y Channel)

Compression of Gray-Scale Images vs Image Quality Assessment. Green functions

represent results obtained by Hi-SET coder, while blue functions by JPEG2000 coder.

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.7: Gray-Scale CSIQ Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.
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B.2 Categorical Subjective Image Quality Image Database

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.8: Gray-Scale CSIQ Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.9: Gray-Scale CSIQ Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.
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CHAPTER 3

B.2.2 Color Images

Compression of Color Images vs Image Quality Assessment. Green functions represent

results obtained by Hi-SET coder, while blue functions by JPEG2000 coder.

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.10: Color CSIQ Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.11: Color CSIQ Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.
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B.3 Image and Video-Communication Image Database

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.12: Color CSIQ Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.

B.3 Image and Video-Communication Image Database

B.3.1 Gray-Scale (Y Channel)

Compression of Gray-Scale Images vs Image Quality Assessment. Green functions

represent results obtained by Hi-SET coder, while blue functions by JPEG2000 coder.

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.13: Gray-Scale IVC Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.
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B. JPEG2000 VS Hi-SET: COMPLEMENTARY RESULTS OF
CHAPTER 3

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.14: Gray-Scale IVC Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.15: Gray-Scale IVC Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.
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B.3 Image and Video-Communication Image Database

B.3.2 Color Images

Compression of Color Images vs Image Quality Assessment. Green functions represent

results obtained by Hi-SET coder, while blue functions by JPEG2000 coder.

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.16: Color IVC Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.17: Color IVC Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.
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B. JPEG2000 VS Hi-SET: COMPLEMENTARY RESULTS OF
CHAPTER 3

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.18: Color IVC Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.
————————————————————————

B.4 Image Database of the Laboratory for Image and

Video Engineering
B.4.1 Gray-Scale (Y Channel)

Compression of Gray-Scale Images vs Image Quality Assessment. Green functions

represent results obtained by Hi-SET coder, while blue functions by JPEG2000 coder.

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.19: Gray-Scale LIVE Image Database: JPEG2000 vs Hi-SET. Metrics em-
ployed: IFC, MSE, MSSIM and NQM.
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B.4 Image Database of the Laboratory for Image and Video Engineering

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.20: Gray-Scale LIVE Image Database: JPEG2000 vs Hi-SET. Metrics em-
ployed: PSNR, SNR, SSIM and UQI.

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.21: Gray-Scale LIVE Image Database: JPEG2000 vs Hi-SET. Metrics em-
ployed: VIF, VIFP, VSNR and WSNR.
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B.4.2 Color Images

Compression of Color Images vs Image Quality Assessment. Green functions represent

results obtained by Hi-SET coder, while blue functions by JPEG2000 coder.

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.22: Color LIVE Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.23: Color LIVE Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.
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B.5 Tampere Image Database

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.24: Color LIVE Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.

B.5 Tampere Image Database
B.5.1 Gray-Scale (Y Channel)

Compression of Gray-Scale Images vs Image Quality Assessment. Green functions

represent results obtained by Hi-SET coder, while blue functions by JPEG2000 coder.

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.25: Gray-Scale TID2008 Image Database: JPEG2000 vs Hi-SET. Metrics
employed: IFC, MSE, MSSIM and NQM.
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B. JPEG2000 VS Hi-SET: COMPLEMENTARY RESULTS OF
CHAPTER 3

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.26: Gray-Scale TID2008 Image Database: JPEG2000 vs Hi-SET. Metrics
employed: PSNR, SNR, SSIM and UQI.

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.27: Gray-Scale TID2008 Image Database: JPEG2000 vs Hi-SET. Metrics
employed: VIF, VIFP, VSNR and WSNR.
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B.5 Tampere Image Database

B.5.2 Color Images

Compression of Color Images vs Image Quality Assessment. Green functions represent

results obtained by Hi-SET coder, while blue functions by JPEG2000 coder.

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.28: Color TID2008 Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.29: Color TID2008 Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.
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B. JPEG2000 VS Hi-SET: COMPLEMENTARY RESULTS OF
CHAPTER 3

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.30: Color TID2008 Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.
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Appendix C

Complementary Results of

Chapter 4

C.1 Correlation between α(ν, r) and α̂(ν, r).

Green functions denoted as CIWaM are perceptual quantized images after applying

α(ν, r), while blue functions denoted as CIWaM−1 are recovered images before applying

α̂(ν, r).

C.1.1 Categorical Subjective Image Quality Image Database

Results obtained in the CSIQ (Fig. A.4) image database.

(a) PSNR (b) MSSIM

Figure C.1: Compression of Gray-scale Images (Y Channel) of the CSIQ image database.
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(a) PSNR (b) MSSIM

Figure C.2: Perceptual Quantization of Color Images of the CSIQ image database.

C.1.2 Image and Video-Communication Image Database

Results obtained in the IVC (Fig. A.1) image database.

(a) PSNR (b) MSSIM

Figure C.3: Perceptual Quantization of Gray-scale Images (Y Channel) of the IVC image
database.
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C.2 JPEG2000 vs ΦSET

(a) PSNR (b) MSSIM

Figure C.4: Perceptual Quantization of Color Images of the IVC image database.

C.2 JPEG2000 vs ΦSET

C.2.1 University of Southern California Image Database

Compression of Color Images vs Image Quality Assessment. Green functions represent

results obtained by ΦSET coder, while blue functions by JPEG2000 coder.

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure C.5: Color CMU Image Database: JPEG2000 vs ΦSET. Metrics employed: IFC,
MSE, MSSIM and NQM.
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(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure C.6: Color CMU Image Database: JPEG2000 vs ΦSET. Metrics employed: PSNR,
SNR, SSIM and UQI.

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure C.7: Color CMU Image Database: JPEG2000 vs ΦSET. Metrics employed: VIF,
VIFP, VSNR and WSNR.
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C.2 JPEG2000 vs ΦSET

C.2.2 Image and Video-Communication Image Database

Compression of Color Images vs Image Quality Assessment. Green functions represent

results obtained by ΦSET coder, while blue functions by JPEG2000 coder.

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure C.8: Color IVC Image Database: JPEG2000 vs ΦSET. Metrics employed: IFC,
MSE, MSSIM and NQM.

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure C.9: Color IVC Image Database: JPEG2000 vs ΦSET. Metrics employed: PSNR,
SNR, SSIM and UQI.
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(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure C.10: Color IVC Image Database: JPEG2000 vs ΦSET. Metrics employed: VIF,
VIFP, VSNR and WSNR.
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