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Abstract
Understanding how colour is used by the human vision sys-

tem is a widely studied research field. The field, though quitead-
vanced, still faces important unanswered questions. One ofthem
is the explanation of the unique hues and the assignment of color
names. This problem addresses the fact of different perceptual
status for different colors.

Recently, Philipona and O’Regan have proposed a biologi-
cal model that allows to extract the reflection properties ofany
surface independently of the lighting conditions. These invariant
properties are the basis to compute a singularity index thatpre-
dicts the asymmetries presented in unique hues and basic color
categories psychophysical data, therefore is giving a further step
in their explanation.

In this paper we build on their formulation and propose a
new singularity index. This new formulation equally accounts
for the location of the 4 peaks of the World colour survey and
has two main advantages. First, it is a simple elegant numeri-
cal measure (the Philipona measurement is a rather cumbersome
formula). Second, we develop a colour-based explanation for the
measure.

Introduction
Opponent space has been defined as a confrontation of non-

mixable colours. That is, it is impossible to perceive a reddish
green, neither a yellowish blue. These four colours: red, green,
yellow and blue are considered ’cardinal’, and their hues are con-
sidered unique hues. However, there is not a widely accepted
theory explaining this uniqueness. Since, opponent theorydoes
not adequately predict the hues perceived perceptually unique
[16],[8].

Whether if opponent theory is underlying it or not, what is
widely assumed is the asymmetry in human perception of differ-
ent color surfaces. Specific color properties hold a different status
in the perception, such as, red, green, yellow and blue, and possi-
bly purple, orange or pink for specific cultures. Explanations for
this fact could be essentially found in the neuronal representation
of color in the human visual system [10] [11], or could be given
by cultural or linguistic facts [6], but is an open issue.

How this asymmetric perception can be achieved in the hu-
man visual system has been studied in a recent work by Philipona
and O’Regan [11]. In this work they explore the hypothesis of
a representation that copes with the reflection properties of sur-
faces independently of the lighting conditions of the observation.
They build a linear biological model by finding a linear constraint
between the tricromatich representation about the illuminant and
the tricromatich representation about the reflected light.This is a

biological approach towards what physicists define as reflectance:
the relationship between the spectrum of light illuminating a sur-
face and the spectrum of light reflected by the surface. Practically,
this is equivalent to the relation between the RGBs of a surface
under different lights with an achromatic surface viewed under
the same light set. For each surface, this linear model finds a
matrix containing the reflectance properties which are illuminant
invariant. They propose the eigenvalues of this matrix as a triplet
representing the inherent reflectance properties of the surface. We
will denote these coefficients as(rs

1, r
s
2, r

s
3) wheres represents the

surface that is being represented with this triple of coefficients.
These reflectance coefficients are used to compute a singu-

larity index that will quantify the special case or the degree of
asymmetry of the corresponding surface. This index is builtin
such a way that it allows to predict the psychophysical data of the
unique hues or the color names of the World Color Survey [1].
The formulation for this Singularity Index is based on ordering
the coefficients,rs

1 > rs
2 > rs

3, and they are related in this way
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finally, the singularity index is given by maximizing a nor-
malized version of them
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2)

)

. (2)

Although this index is predicting the asymmetries, the for-
mulation is not compact and is defined in a very ad-hoc way to
predict the asymmetric properties of the color categories.More-
over, it is not related with any known property of colour. In this
paper we focus on these two points. We propose a new singu-
larity function, completely compact, and related with well-known
colour measures, such achromaticity. We will show that thisour
formulation also predicts the unique hues and matches the World
color survey data as well as the previous formulation.

The paper is divided as follows. In the next section, we will
explain the details of the mathematical background, where we
base our approach. Later on, we develop our singularity function
and we show the results of our predictions versus the psychophys-
ical data of the mentioned sets.

Mathematical Background
The linear biological model introduced in [11] is built on

the assumption that human vision system it is able to extractthe
reflection properties of the world surfaces independently of the



lighting conditions of the observation. It brings to a canonical
representation of the reflectance.

This model is based on the computation of the CIE R,G,B
coordinates ro represent physical properties of the light reflected
by a surface achieving the observer eye which lose part of the
colour information due to the photopigments absortion. This is
referred as the accessible information by the authors [11].

This model will find a matrix containing the surface re-
flectance properties for each surface. From these matrix, weare
able to extract a colour triple (reflectance) that is the colour of the
surface independent from the illuminant. Once they obtain this
triple, they developed a formulation that explains the location of
WCS color names and unique hues.

To build the data they select a wide number of illumi-
nants and reflectances. Moreover, they select the photopigments.
For photopigments they used the 10-deg Stiles and Burch Color
Matching Functions (CMFs) [14] (they checked that using Stock-
man and Sharpe [15] cone fundamentals the results do not present
any noticiable modification). For the set of illuminants (from now
on setE) they used the 99 daylight spcetra from Romero [13] et
al, a Gaussian sample of 200 spectra constructed from the basis
functions S0, S1, S2 derived by Judd et al [5] , and the 239 day-
light spectra from Chiao et al [3]. Finally, the reflectancesused
are the set of 1600 Munsell glossy chips from Joensuu [9]

Firstly, we definevs as the accessible information about the
reflected light for a given surface s

vs
i =

∫

w
Ri(λ )S(λ )E(λ )dλ , i = 1,2,3 (3)

whereλ is a set of wavelengths,E(λ ) the spectral power dis-
tribution of the light in each wavelength,Ri(λ ) the absorption of
photopigments presents in L,M and S photoreceptors respectively
andS(λ ) the reflectance of a surface.

Secondly, we defineu as the accessible information about
the incident illuminant

u=
∫

w
Ri(λ )E(λ )dλ , i = 1,2,3 (4)

from these two equations we can solve by linear regression

vs = Asu (5)

for a set of illuminantsE. This equation uses only the information
about light that is (physically) accessible to an organism given the
photoreceptors it posseses. This means, that matrixAs is contain-
ing the surface reflectance properties inside it.

Mathematically we will solve the matrixAs by linear regres-
sion, and asAs is a 3-by-3 matrix, it will be diagonalized

As = (Us)−1VsUs (6)

whereVs is a diagonal matrix containing the eigenvalues of
As andUs containing the respective eigenvectors. Philipona and
O’regan in their paper show that they form a basis, and then, these
eigenvalues are a colour triple relating the surface reflectance and
a white reflectance.

After that, Philipona and O’Regan also develop a formula-
tion that by using this colour triple show the relation between
these eigenvalues and the four main color Names and the four

unique hues. This formulation is the one explained in the Intro-
duction where(rs

1, r
s
2, r

s
3). are the eigenvalues for a particular sur-

face in decreasing order. Then, they define the equation 1 that will
give high numbers if one or two of the values are close to zero.
Finally, they define the singular indexSI as shown in equation 2.
From now on, we will use(r1, r2, r3) instead of(rs

1, r
s
2, r

s
3).

In this paper we will use the framework explained for
obtaining the color triple, but we will use this colour triple
in order to improve the formulation defined by Philipona and
O’Regan since their formula is complex. Normalization is needed
and there is no specific colour information. Then, our idea inthe
next section is to find a less complex formula also relating the
results to some well-known color measures.

Singularity Function
In this section we propose a new singularity index that pur-

suits a simpler and more compact formulation with specific prop-
erties. First property will be to have a measure that should be inde-
pendent of the order of the values, that means, the triple(r1, r2, r3)
being the eigenvalues of a matrixAS of a surfaceS, can be given
in any order since the formulation will extract the relativeinfor-
mation of each component over the other two. A second prop-
erty we want to fulfill is to normalize independently of whichis
the maximum value of the components. Our proposal is to boost
the importance of a particular coefficient over the other twoby
a mathematical function. To this end, we propose to use a cubic
function normalized by the product of the components, this is to
compute the terms

I1 =
r3
1

r1 · r2 · r3
(7)

I2 =
r3
2

r1 · r2 · r3
(8)

I3 =
r3
3

r1 · r2 · r3
(9)

Once, the components has been normalized and boosted,
they can be simply combined by a sum. In this case, if the surface
has a singularity it will be reflected in at least one of the these
three components, and it will eventually appear in the addition,
hence our Compact Singularity Index (CSI) is given by

CSI= I1+ I2+ I3 =
r3
1 + r3

2+ r3
3

r1 · r2 · r3
(10)

Let us now continue explaining different properties that can
be derived. Firstly, let us explain the formulation from a color ba-
sis point of view. In the previous section we showed that the triple
(r1, r2, r3) of the reflection properties of a surface where derived
as the eigenvalues of a matrix. Then we can consider the orthog-
onal basis formed by the corresponding eigenvectors{u1,u2,u3}
as the basis of a 3D color space where the reflection properties
can be considered as the color of a surface. In this color space,
achromatic surfaces will have three equal reflection coefficient
and will cope the diagonal axis of the space (this fact relates this
new space to an RGB space). Then, in this space our formulation
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Figure 1. a) Berlin and Kay psychophysical data for evolved languages b)WCS psychophysical data for unwritten languages

will represent a chromaticness measure that can be computedas
the determinant of the following matrix

M =





r1 r2 r3
r2 r3 r1
r3 r1 r2



 (11)

that is given by

det(M) = r3
1+ r3

2 + r3
3 −3· r1 · r2 · r3 (12)

whose normalisation brings to the compact singularity func-
tion

det(M)

r1 · r2 · r3
=

r3
1+ r3

2 + r3
3 −3r1r2r3

r1 · r2 · r3
(13)

=
r3
1+ r3

2 + r3
3

r1 · r2 · r3
−3 (14)

∝
r3
1+ r3

2 + r3
3

r1 · r2 · r3
(15)

= CSI (16)

(17)

another interesting property is its independence to intensity
if it is considered as a color representation, this is

(s· r1)
3+(s· r2)

3+(s· r3)
3

(s· r1) · (s· r2) · (s· r3)
=

=
s3(r3

1+ r3
2 + r3

3)

s3 · (r1 · r2 · r3)
=

r3
1+ r3

2 + r3
3

r1 · r2 · r3
(18)

Finally, we introduce another interesting property of thisfor-
mulation, since it can be seen as an approximation of the percep-
tual space given by

r1 = ρ
1
3
1 , r2 = ρ

1
3
2 , r3 = ρ

1
3
3 (19)

Hence, by replacing equation 19 in equation 10 we found

CSI=
r3
1+ r3

2 + r3
3

r1 · r2 · r3
=

ρ1+ρ2+ρ3
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1 ρ
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=

=
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1
3

∝
aritmean
geomean

(20)

wherearitmeanrefers to the arithmetic mean andgeomean
refers to the geometric mean in a perceptual space.

Results
In this section we show the results in two experiments that

use two different sets of data. First experiment will show how the
CSI predicts the World Color Survey CS data [1] (WCS), that can
be resumed as the prediction of the 4 universally unique colours.
In the second experiment we will deal with the problem of finding
the unique hues.

Experiment 1
WCS data was collected in order to extend the elementary

theory of colour names developed by Berlin and Kay in 1969
[2]. In this early book they proposed an schema of how colour
names correlates with the degree of evolution of different lan-
guages, converging to the most evolved ones as those having 11
basic terms. They provided psychophysical data for 20 written
languages. With the goal of generalizing the results of thisearly
experiment WCS data compile a similar experiment but with a
wider range of languages and samples. Conclusions are not ex-
actly the same. Six basic colours arise in this experiment: red,
green, blue, yellow, black and white instead of the 11 proposed
earlier. Their universality is still a controversial topicbeing sup-
ported in [6],[7], while contradicted in others [12], [4].

To recap, while Berlin and Kay original psychophysical data
is collected from speakers of 20 written languages (where all the
subjects spoke also English) and it finds 11 colour categories (8
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Figure 2. a) World Color Survey Data contour plot b) Philipona and O’Regan Singulariry Index plot c) Our CSI index plot d) Combination of (a) and the level

curves of (b)(in red) e) Combination of (a) and the level curves of (c) (in red)

of them chromatic: red, green, blue, yellow, pink, purple, orange
and brown), WCS data is collected from 24 native speakers of 110
unwritten languages and it concluded that 6 colors arised (4of
them chromatic: red, green, blue, yellow). These last four colours
are considered as the universal colours due to they appear inall
the languages. See Figure 1 where we show both Berlin & Kay
chromatic data 1.a, and WCS chromatic data 1.b.

Then, we will use our compact singularity index to fit the
chromatic WCS data. We will then, for each chip in the dataset,
use its reflectance to construct the matrixAs and the reflection
components(r1, r2, r3). Once we obtain these values we will com-
pute the compact singularity index for the surface. In figure2 we
can compare both singularities indexes (Philipona and O’Regan
(SI) and our (CSI)) versus the WCS data. Figure 2.a represent
the contour of the WCS data, where clearly the four colours ap-
pear. Figure 2.b is the contour produced by the singularity index
developed by Philipona and O’Regan. Figure 2.c represents the

contour produced by our compact singularity index. Here we can
observe that the local maxima is close to the WCS data. More-
over, comparing figures 2.a 2.b and 2.c we can conclude that our
formulation fits really well the blue and the yellow (better than
Philipona and O’Regan) while in the red colour ourCSI index ob-
tains two local maxima (one perfectly located while the other is
a few displaced), but when considering the influence region for
both these maxima, the red region fits well with the WCS data. In
both cases the green region is also well fitted.

The comparison of these results can be observed in figure 2.d
where we plot an overlapping of the contours of the WCS data
(Figure 2.a) and the level curves representing SI index (Figure
2.b). And in figure 2.e we plot the contours of the WCS data
(Figure 2.a) and the level curves of ourCSI index (Figure 2.c).



Experiment 2
Unique hues are still an open problem. There is not an

accepted theory explaining the arise of this four unique hues
[16]. Until now, neither the trichromatic theory nor the first
opponent stages have dealt with an explanation of them. How-
ever, Philipona and O’Regan’s biological model approximates ef-
ficiently these unique hues locations. Following their idea, we
will also try to fit these unique hues by using our CSI index.

In order to use our formulation to fit unique hues we will
make a similar assumption as is done in previous work. This
means trying to simulate experiments where observers classically
face ’aperture colours’. The main problem is while in these ex-
periments the stimuli is created through the use of lights ofcon-
trolled spectra composition projected directly into the eye, in our
case the index works with surface properties. Then, we will use
the assumption that the stimuli produced by these experiments is
equivalent to the stimuli produced by the observation of a surface
reflectance under the most common illuminant,D65.

Moreover, following again Philipona and O’Regan’ paper,
we will simplify the representation of the reflectances by using
sums of only three basis functions, and we will plot the results of
our Singularity Function in the CIE 1931 chromatic coordinates
[17].

We have used as reflectances all the set of chips in the Mun-
sell book. Our results are plotted in figure 3. In particular,in 3.a
we can observe that again the four local maxima of our function
are located on the position of the four unique hues. Moreoverin
figure 3.b we plot the contour of the surface in 3.a to better clas-
sify our local maxima.

Conclusion
Different approaches have previously tried to explain the per-

ceptual asymmetries of colour, in particular, unique hues have
been revealed as a key point on this research. However, the prob-
lem of unique hues is still open to debate. In this paper we have
gone further in the idea developed by Philipona and O’Regan in
[11] using their biological model to develop a new formulation re-
garding color properties (chromaticity). We have proved that our
new compact singularity function (CSI) fits very well both, World
Colour Survey data and Unique Hues data.

Moreover, the advantages of the new Compact Singularity
Index (CSI) are twofold. Firstly,CSI formulation is completely
compact, while previous formulation [11] is cumbersome. Sec-
ondly,CSI is related to a well-known colour measure about chro-
maticity.

However, considerable amount of work still needs to be done
in this area. Firstly, Philipona and O’Regan biological model
deals with some complex eigenvalues that are truncated. These
complex eigenvalues leads to some numeric errors. Secondly, the
fitting of data should be improved by going further into theCSI
index and relating it to other colour properties.
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Figure 3. a) Unique hues founded by our formula represented in the CIE xy Space b) Contour plot of our unique hues in the CIE xy space


