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ABSTRACT

Context. The introduction of infrared arrays for lunar occultations (LO) work and the improvement of predictions based on new deep
IR catalogues have resulted in a large increase in sensitivity and in the number of observable occultations.

Aims. We provide the means for an automated reduction of large sets of LO data. This frees the user from the tedious task of estimating
first-guess parameters for the fit of each LO lightcurve. At the end of the process, ready-made plots and statistics enable the user to
identify sources that appear to be resolved or binary, and to initiate their detailed interactive analysis.

Methods. The pipeline is tailored to array data, including the extraction of the lightcurves from FITS cubes. Because of its robustness
and efficiency, the wavelet transform has been chosen to compute the initial guess of the parameters of the lightcurve fit.

Results. We illustrate and discuss our automatic reduction pipeline by analyzing a large volume of novel occultation data recorded at
Calar Alto Observatory. The automated pipeline package is available from the authors.
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1. Introduction

For decades, lunar occultations (LO) have occupied a special
niche as a technique for high-angular resolution with excel-
lent performance, but relatively inefficient yield. The diffrac-
tion fringes that are created by the lunar limb as it occults a
background source, provide a unique opportunity to achieve mil-
liarcsecond angular resolution with single telescopes also of rel-
atively small diameter. In terms of instrumentation, LO have al-
ways been simple, requiring only a fast photometer. Of course,
they have the significant drawback that only sources included in
the apparent lunar orbit can be observed (about 10% of the sky),
and then only at arbitrary fixed times and with limited opportuni-
ties for repeated observations. If one adds that each observation
only provides a one-dimensional scan of the source, it is clear
that detailed and repeated observations are better performed with
long-baseline interferometry (LBI), when available. One should,
however, not forget additional important advantages of LO:
even for complicated sources, the full, one-dimensional bright-
ness profile can be recovered according to maximum-likelihood
principles without any assumptions on the source’s geometry
(Richichi 1989). Besides, the limiting sensitivity achieved in the
near-IR by LO at the 1.5 m telescope on Calar Alto is K ~ 8 mag
(Richichi et al. 2006a). When extrapolated to a 4-meter class

* Algorithm tested with observations collected at Calar Alto
Observatory (Spain). Calar Alto is operated by the German-Spanish
Astronomical Center (CAHA).

telescope or larger, LO appear quite competitive with even the
most powerful, LBI facilities (Richichi 1997).

As a result, although the trend is understandably to develop
more flexible, powerful and complex interferometric facilities,
there is some balance that makes LO still attractive at least for
some applications. It should not be forgotten that the majority
of the hundreds of directly-measured stellar angular diameters
(Richichi (2007) listed 688, and the numbers keep increasing)
were indeed obtained by LO, and that LO are still the major
contributor to the discovery of small separation binary stars.

Two recent developments, however, have provided a signif-
icant boost to the performance of the LO technique, and have
significantly enlarged its range of applications: a) the introduc-
tion of IR array detectors that can be read out at fast rates on a
small subarray has made it possible to provide a large gain in
limiting sensitivity, and b) IR survey catalogues that have led to
an exponential increase of the number of sources for which LO
can be computed. Literally, thousands of occultations per night
could now be potentially observed with a large telescope. We
describe in this paper the details and impact of these two factors
for LO work. We also address the new needs imposed on data
reduction by the potential availability of a large volume of lu-
nar occultation data per night, by describing new approaches to
an automated LO data pipeline. We illustrate both the new qual-
ity of LO data and their analysis by means of examples drawn
from the observation of two recent passages of the Moon over
crowded regions in the vicinity of the Galactic Center, carried
out with array-equipped instruments at Calar Alto and Paranal
observatories.
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Fig. 1. Frequency of lunar occultation events as a function of K magnitude, computed on the basis of all standard catalogues in ALOP (gray bars)
and of the 2MASS catalogue only (limited to K < 11, clear bars). For both cases, we have used the constraints of Moon >25° above horizon and
Sun <-5° below horizon. Left: a relatively rich 5-night run, from 7 thru 11 January 2006, at Calar Alto Observatory. Right: part of the night of
August 5, 2006 from Paranal, when the Moon reached a minimum approach of 12" from the Galactic Center. Note the logarithmic scale.

2. Infrared arrays and new catalogues

A number of reasons make the near-IR domain preferable for
LO work with respect to other wavelengths.

First, LO observations are affected by the high background
around the Moon which, being mainly reflected solar light,
shows an intensity maximum at visible wavelengths. Because
of the atmospheric Rayleigh scattering (cA™*), the background
level greatly decreases in the near-IR. At longer wavelengths
(10 pm-20 pm), the thermal emission of Earth’s atmosphere and
of the lunar surface introduces a high-background level.

Second, the spacing of diffraction fringes at the telescope is

proportional to A~ Therefore, for two LO observations with the
same temporal sampling, one recorded in IR will obtain a higher
fringe sampling than one in the visible.

Finally, at least in the field of stellar diameters, there is an
advantage to observing in the near-IR because for a given bolo-
metric flux redder stars will present a larger angular diameter.

Being cheap and with a fast time response, near-IR photome-
ters have traditionally represented the detector of choice for LO
observations. Richichi (1997) showed the great increase in sen-
sitivity possible with panoramic arrays, which by reading only
the pixels of interest, permit to avoid most of the shot noise
generated by the high background in LO. Such arrays are now
becoming a viable option, thanks to read-out noises, that are de-
creasing at each new generation of chips, and to flexible elec-
tronics allow us to address a subarray and read it out at mil-
lisecond rates. Richichi (1997) predicted that an 8 m telescope
would reach between K = 12 and 14 mag, depending on the
lunar phase and background, with an integration time of 12 ms
at signal-noise ratio (SNR) = 10. Observations on one of the
8.2m VLT telescopes, equipped with the ISAAC instrument in
the so-called burst mode (Richichi et al. 2006b), show a limiting
magnitude K ~ 12.5 at SNR = 1 and 3 ms integration time, in
agreement with the decade-old prediction.

These newly-achieved sensitivities call for a correspond-
ing extension in the limiting magnitudes of the catalogues
used for LO predictions, and their completeness. In the near-
IR, until recently the only survey-type catalogue available was
the Two-Micron Sky Survey (TMSS, or IRC, Neugebauer &
Leighton 1969) that was incomplete in declination and limited
to K < 3. Already, a 1 m-class telescope equipped with an IR
photometer exceeds this sensitivity by several magnitudes (Fors
et al. 2004; Richichi et al. 1996). The release of catalogues

associated with modern all-sky near-infrared surveys, such as
2MASS (Cutri et al. 2003) and DENIS (Epchtein et al. 1997),
has helped. Our prediction software ALOP (Richichi 1985) in-
cludes about 50 other catalogues with stellar and extragalactic
sources. We have now added a subset of 2MASS with K < 11,
which includes 3.7 x 10° sources subject to occultations.

While with the previous catalogues a typical night run close
to the maximum lunar phase would cover 100—150 sources over
several nights, predictions with 2MASS can include thousands
of events observable with a large telescope over one night.
Special cases, like the passage of the Moon over crowded,
obscured regions in the direction of the Galactic Center, can
include thousands of events predicted over just a few hours
(Richichi et al. 2006b; Fors et al. 2006). Figure 1 illustrates
the two cases. The incompleteness of the catalogues without
2MASS is evident already from the regime 5 < K < 7mag. At
even fainter magnitudes, but still within the limits of the tech-
nique as described here, the predictions based on the 2MASS
catalogue are more numerous by several orders of magnitude.

Note that the increase in the number of potential occulta-
tion candidates is not reflected automatically in more results. The
shift to fainter magnitudes implies that the SNR of the recorded
lightcurves is on average lower; LO runs based on 2MASS pre-
dictions are now likely to be less efficient in detecting binaries
when compared for example to studies such as those of Evans
et al. (1986) and Richichi et al. (2002), especially for large
brightness ratios.

3. Automated reduction of large sets of lunar
occultation data

In general, LO data are analyzed by fitting model lightcurves.
We take as an example the Arcetri Lunar Occultation Reduction
software (ALOR), a general model-dependent lightcurve fitting
algorithm first developed by one of us (Richichi 1989). Two
groups of parameters are simultaneously fitted using a non-linear
least squares method. First, those related to the geometry of the
event: the occultation time (fy), the stellar intensity (Fp), the
intensity of the background (By) and the limb linear velocity
with respect to the source (Vp). Second, those related to physical
quantities of the source: for resolved sources; the angular diam-
eter and; for binary (or multiple) stars, the projected separation
and the brightness ratio of the components.
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Fig. 2. Flow-chart description of AWLORP.

In general, the fitting procedure is approached in two steps.
First, a preliminar fit assuming an unresolved source model is
performed. To ensure convergence, ALOR needs to be provided
with reliable initial guesses. We can estimate the geometrical pa-
rameters with a visual inspection of the data, and Vp is predicted.
The source parameters can be refined in a second step. This is
done interactively since it requires understanding the nature of
each particular lightcurve and the possible correlation between
geometrical and physical parameters.

As a result of that great increase in the number of poten-
tial occultations, we soon realized that we needed a substan-
tial optimization in the processes of extracting the occultation
lightcurves from the raw data and of the interactive evaluation of
the LO lightcurves for the estimate of the initial parameter values
needed for the fits. We then developed, implemented, and tested
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a new automatic reduction tool, the Automatic Wavelet-based
Lunar Occultation Reduction Package (AWLORP; Fors 2006).
This allows both lightcurve extraction and characterization to
perform the preliminary analysis of large sets of LO events in
a quick and automated fashion. In the following, we describe
the main parts of AWLORP, which are schematically illustrated in
Fig. 2.

3.1. Input data and lightcurve extraction

In the cases available to us, the LO data are stored in Flexible
Image Transport System (FITS) cubes. The number of cube
frames is given by the frame exposure and total integration time.
Additional information, such as telescope diameter, filter and
identificator of the occulted object, are extracted from the FITS



300

cube header and saved in a separate file. In addition, the limb lin-
ear velocity and the distance to the Moon as predicted by ALOP
are available in a separate file.

An occultation lightcurve must be extracted from the
recorded FITS cube file. We explored several methods for this
purpose, among them fixed aperture integration, border clip-
ping, Gaussian profile and brightest-faintest pixels extraction.
We found these partly unsatisfactory, among other things, be-
cause of lack of connectivity across the stellar image and be-
cause of sensitivity to flux and image shape variations.

We addressed the problem of connectivity with the use of
masking extraction, and two methods were considered. The
first method, called 3D-SExtractor, consists of a customiza-
tion of the object detection package SExtractor (Bertin &
Arnouts 1996) for the case of 3D FITS LO cubes. The algorithm
invokes SExtractor for every frame and evaluates its output to
decide if the source has been effectively detected. The segmenta-
tion map (or source mask) provided by SExtractor defines the
object (background) pixels in case of positive (negative) detec-
tion. These pixels are used to compute the source (background)
intensity before and after the occultation. The second method,
called Average mask, consists in performing simple aperture
photometry using a predefined source mask. This is obtained by
averaging a large number of frames previous to the occultation
and by applying a 30 thresholding.

We empirically compared 3D-SExtractor and Average
mask methods under a variety of SNR, scintillation, and pixel
sampling situations. Although the 3D-SExtractor makes use
of a more exact mask definition for every frame, Average mask
was found to provide less noisy lightcurves with no evident
fringe smoothing. Therefore, we adopted this extraction algo-
rithm as the default in the AWLORP description.

3.2. Lightcurve characterization

Inaccuracies in catalogue coordinates and lunar limb irregular-
ities introduce an uncertainty in the predicted occultation time
of about 5 to 10 s. To secure the effective registering of an oc-
cultation event, the acquisition sequence is started well before
the predicted occultation time. This results in a very long ex-
tracted lightcurve, typically spanning several tens of seconds. In
contrast, the fringes that contain the relevant high-resolution in-
formation extend only a few tenths of a second. In addition, to
accomplish a proper fitting of this much shorter lightcurve sub-
sample, as mentioned before, we need reliable estimates of 7y,
Bo and F| 0-

The problem corresponds to detecting a slope with a known-
frequency range in a noisy, equally sampled data series. The key
idea here is to note that the drop from the first fringe intensity
(close to ty) is always characterized by a signature of a given
spatial frequency. Of course, this frequency depends on the data
sampling but, once this is fixed, the aimed algorithm should be
able to detect that signature and provide an estimate of ¢, regard-
less its SNR. Once f, is known, the other two parameters (B, and
Fy) can be estimated.

This problem calls for a transformation of the data that would
be capable of isolating signatures in frequency space, while
simultaneously keeping the temporal information untouched.
Wavelet transform turns out to be convenient for this purpose.
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3.2.1. Wavelet transform overview

The wavelet transform of a distribution f(¢) can be expressed as:

+00

| -b
W(f(n)a,b) = la|> f f(@ w(’T) dr, ey

oo

where a and b are scaling and translational parameters respec-
tively. Each base (or scaling) function w(%) is a scaled and
translated version of a function i called mother wavelet, satisfy-
ing the relation f W( ’;b) =0.

We followed the a trous algorithm (Starck & Murtagh 1994)
to obtain the discrete wavelet decomposition of f(f) into a se-

quence of approximations:

Fi(f(0) = fi(0), F2(fi(1)) = fo(D)... @)

fi® (@ = 1,..,n) are computed by performing successive
convolutions with a filter derived from the scaling function,
which in this case is a B3 cubic spline. The use of a Bz cubic
spline leads to a convolution with a mask of 5 elements, scaled
as (1,4,6,4,1).

The differences between two consecutive approximations
fi-1(¢) and fi(¢) are the wavelet (or detail) planes, w;(f). Letting
fo(t) = f(r), we can reconstruct the original signal from the
expression:

£y =" wid) + f(0), (3)
i=1

where f,(f) is a residual signal that contains the global energy
of f(7). Note that n = r, but we explicitly substitute n with r
to clearly express the concept of residual. Each wavelet plane
can be understood as a localized frequential representation at a
given scale according to the wavelet base function used in the
decomposition.

In our case, we are using a multiresolution decomposition
scheme, which means the original signal f(7) has twice the res-
olution of f; (7). This latter has twice the resolution of f;(#), and
SO on.

3.2.2. Algorithm description

We developed a program to perform a discrete decomposition of
the lightcurve into ny,, wavelet planes. Note that the choice of
nyay depends exclusively on the data sampling and will be dis-
cussed later. For example, ny.y = 7 was empirically found to
be a suitable value for representing all the features in the fre-
quency space of the lightcurve when the sampling was 8.4 ms.
The 2nd to 7th wavelet planes resulting from the decomposition
of the lightcurve of the bright star SAO 190556 (SNR = 43) are
represented in Fig. 3. The 1st plane was excluded as it nearly
exclusively contains noise features not relevant for this discus-
sion. For the sake of simplicity, we will consider this particular
lightcurve and sampling value in the description that follows.
We designed an algorithm which estimates #y, By and Fy
from the previous wavelet planes. This consists of the following
two steps: first, it was empirically determined' that the 7th plane
serves as an invariant indicator of the occultation time (fy). In
particular, #o coincides approximately with the zero located be-
tween the absolute minimum (7;"") and maximum (z5**) of that

0
plane (see upper right panel in Fig. 3 for a zoomed display of the

' This was realized by repeating the same analysis to many other
lightcurves of different SNR values and same time sampling (8.4 ms).
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Fig. 3. Schematic of the wavelet-based algorithm for the estimation of #,, Fy, and B, to be used in AWLORP. The lightcurve corresponds to an
occultation of SAO 190556 observed at the Calar Alto Observatory, sampled every 8.4 ms. Left: box with 2nd to 7th wavelet planes resulting from
the wavelet decomposition of the original lightcurve. Upper right: the 7th plane is found to be a good indicator of 7). A zoomed display of the
region around 7, is shown. Lower right: a box display of 5th plane (bottom part of this panel) provides the abscissae #, , to compute F and B in

the original lightcurve (upper part of the same panel).

7th plane). The good localization of f; in this plane is justified
because the first fringe magnitude drop is mostly represented at
this wavelet scale. In addition, the presence of noise is greatly di-
minished in this plane. This is because noise sources (electronics
or scintillation) contribute at higher frequencies, and therefore
are better represented at lower wavelet scales (planes). In other
words, this criteria for estimating f is likely to be insensitive to
noise, even for the lowest SIVR cases.

Second, once a first estimate of 7y was obtained, By and F)
could be derived by considering the Sth wavelet plane. We found
that this plane indicates those values with fairly good approxi-
mation. The procedure is illustrated in Fig. 3 and is described as
follows:

1. we consider the abscissa in the 5th plane, corresponding to
to found in the 7th plane;

2. from 1y, we search for the nearby zeroes in the 5th plane,
before and after the above abscissa. We call them #, and 7,;

3. we estimate By by averaging the lightcurve values around
t, within a specified time range. We empirically fixed this
to [—8, 8] samples because it provided a good compromise
between improving noise attenuation and suffering from oc-
casional background slopes;

4. the same window average is computed around #,. The ob-
tained value (/,) represents a mean value of the intensity
at the plateau region before the onset of diffraction fringes.
Note that the 5th wavelet plane was chosen because its zero
at 1, is safely before the fringes region in the lightcurve,
where the intensity is not constant and, thus, not appropri-
ate for /, calculation;

5. Fo is computed by subtracting By to /.

As in the case of the 7th plane, the contribution in the 5th plane
is dominated by signal features represented at this scale, while
noise, even the scintillation component, has a minor presence.
Therefore, again, the estimation criteria for By and F) is likely
to be well behaved and robust in presence of high noise.
Although AWLORP was demonstrated on a particular data
set, its applicability is totally extensible to any sampling of the
lightcurve and also to reappearances. To show this, we repeated
the previous algorithm description for 6 sets of 100 simulated”
lightcurves of different samplings (1, 2, 4, 6, 8 and 10 ms). For
these six samplings, ny,y was found to be 8, 7, 6, 6, 5 and 5, re-
spectively. Note these values are proportional to a geometric se-
quence of ratio 2 and argument (8 — nyay), Which is in agreement
with the dyadic nature of the wavelet transform we adopted.

3.3. Lightcurve fitting

The algorithm just described has been integrated in an automated
pipeline. As shown in the scheme of Fig. 2, the characterization
of the lightcurve is used to decide if a fit can be performed suc-
cesfully with ALOR. The cases of very faint sources, wide bina-
ries and those lightcurves with some data truncation (i.e. very
short time span on either side of the diffraction fringes) are the
typical exclusions, and are discussed in Sect. 4.3. In case of pos-
itive evaluation, ALOR is executed using the detected values of
to, Fo, and By as initial guesses. After the preliminary fit is per-
formed, a quicklook plot of lightcurve data, model, and residual
files is generated. This process is iterated for all the observed
sources.

% The procedure folowed to simulate these data sets is explained in
Sect. 4.1.
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to the SNR value, and the histogram peaks are sistematically shifted within the range A7y ~ [-4, —2] ms (only 1 to 2 sampling points).

This automatic pipeline frees us from the most tedious and
error-prone part of ALOR reduction. The pipeline spends a few
seconds per occultation to complete the whole process de-
scribed in Fig. 2. For comparison, an experienced user takes
10-20 min per event for reaching the same stage of the reduc-
tion pipeline. In cases when the data sets included hundreds of
occultation events, this difference is substantial. The pipeline
was coded entirely in Perl programming language, which turns
our to be a powerful and flexible tool for concatenating the
I/O streams of independent programs.

Once AWLORP has automatically generated all the single
source fit plots, the user can perform a quick visual inspection.
The objective of this first evaluation is to separate the unre-
solved, relatively uninteresting events from those that bear the
typical marks of a resolved angular diameter, of an extended
component or of a multiple source. These latter will still need
an interactive data reduction with ALOR, but they will represent
typically only a small fraction of the whole data set.

4. Performance evaluation

We have verified the performance of AWLORP by analysing both
simulated and real LO data sets.

4.1. Simulated data

Thanks to a specific module included in ALOR, a set of sim-
ulated LO lightcurves was generated for varying SNR values.
The noise model assumes three independent noises sources: de-
tector electronics, photon shot-noise, and scintillation, which
are of Gaussian, Poisson, and multiplicative nature, respectively
(Richichi 1989). With a realistic combination of these three
noise sources, we generated six series with SNR 50, 20, 10, 5,2
and 1, each of them consisting of 10000 lightcurves. We chose
the sampling to be 2 ms, which is a realistic value considering
what is offered by current detectors.

AWLORP was executed for all the 60 000 simulated events. For
each lightcurve, we found an estimate of the triplet (#y, Fo, Bo).

The AWLORP only failed to characterize the lightcurve in 10 cases
of the noisiest series for which the ALOR fits could not converge.
For the remaining 59990 cases, we computed the difference
(Aty) between the detected and the simulated occultation time
and plotted these differences as shown in Fig. 4. Two comments
can be made.

First, the Aty distribution is, to a good approximation,
Gaussian-shaped. This is in agreement with the fact that the
first fringe signature is primarily dominated by Gaussian noise
at the wavelet plane (ny,y = 7) employed to estimate fy. This
noise distribution has its origins in the detector read-out for
the faint end (low SNR) and in the shot-noise for the bright
end (high SNR), which can be approximated by a Gaussian dis-
tribution in this regime. In addition, the typical width of the
Aty distribution is inversely proportional to the SNR value. A
Gaussian function was fitted to every histogram, and we found
the values oo = 23.0,11.7,4.6,2.3,1.1,0.5 for the cases with
SNR =1,2,5,10, 20, 50.

Second, note that the histograms in Fig. 4 are not exactly
centered at Afyg = 0, but systematically shifted 4 ms to 2 ms
(only 2 to 1 sampling points). This error is about the Nyquist
cut-off frequency of our data sampling. It can be assumed as a
limitation imposed by the data and not as an intrinsic constraint
of AWLORP. The difference could be corrected by subtracting this
small offset to all analyzed lightcurves, but it is in any case of no
consequence for the purpose of the subsequent interactive anal-
ysis.

4.2. Real data

We considered a set of six real lightcurves. These were recorded
in the course of Calar Alto Lunar Occultation Program (CALOP)
(Richichi et al. 2006a; Fors et al. 2004). They correspond to a
series of SNR values similar to the one discussed in Sect. 4.1.
The robustness of 7, estimation is shown in Fig. 5, where
even in the lightcurves at the limit of detection (SNR = 1.2,2.1)
the value of 1, is correctly detected. This is confirmed by visual
inspection and by an comparison with the predicted values.
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CALOP program. The left side panels show the whole lightcurves (60 s). The right side panels show the trimmed lightcurves (spanning only 2 s)

around the t‘é value detected by AWLORP. The occultation time fitted by ALOR using tg as initial value

faintest SNR case, the occultation time is correctly detected.

To verify this concordance, we ran ALOR fits for all six
lightcurves with the AWLORP-detected triplets (7o, Fo, Bo) as ini-
tial values. Even in the faintest cases, ALOR converged for all
parameters of the lightcurve model. With regard as #y, the dif-
ference between the initial and the fitted values never exceeded
13.6 ms (1.6 sample points) as can be seen in Fig. 5.

4.3. Problematic cases

The pipeline just described works well for about 98% of the
recorded events. There are, however, a few special situations

i

, 1y, are also displayed. Note that even in the

where the algorithm of Fig. 2 fails. Those can be classified in
three distinctive groups:

1. The current version of wavelet-based lightcurve characteri-
zation does not support wide binary events. In other words,
the pipeline cannot simultaneously determine the values (4,
B} and Fjy) and (¢§, BE and F§) for two components A and B
separated by more than a hundred of milliarcseconds. Since
these cases represent at most a few percent of the overall vol-
ume of LO events and they are also relatively uninteresting,
this feature has not been implemented yet.
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2. Due to observational constraints, to an unusually large pre-
diction error or simply by mistake, sometimes the recording
of an event is started too close to the actual occultation time.
Since the scaling function has a given size at each wavelet
scale, there is a filter ramp that extends over an initial span
of data depending on the wavelet plane. For example, in the
case of data in Sect. 5 this happens up to 4000 ms from the
beginning of the lightcurves, since this is the size of the scal-
ing function at the scale of the 7th plane for the given tem-
poral sampling.

3. Depending on the subarray size employed, the image scale,
the seeing conditions or telescope tracking, part of the stel-
lar image might be displaced outside the subarray so that the
extracted flux decreases and the shape of lightcurve is af-
fected. Under these circumstances, AWLORP is likely to pro-
duce false 7y detections. Again, the small number of cases
affected does not justify the substantial effort required to im-
prove the AWLORP treatment.

5. Summary

The observation of lunar occultation (LO) events with modern
infrared array detectors at large telescopes, combined with the
use of infrared survey catalogues for the predictions, has shown
that even a few hours of observation can result in many tens if
not hundreds of recorded occultation lightcurves. The work to
bring these data sets to a stage where an experienced observer
can concentrate on accurate interactive data analysis for the most
interesting events is long and tedious.

We have designed, implemented, and tested an automated
data pipeline that takes care of extracting the lightcurves from
the original array data (FITS cubes in our case); of restricting
the range from the original tens of seconds to the few seconds
of interest near the occultation event; of estimating the initial
guesses for a model-dependent fit; of performing the fit; and fi-
nally of producing compact plots for easy visual inspection. This
effectively reduces the time needed for the initial preprocess-
ing from several days to a few hours, and frees the user from a
rather tedious and error-prone task. The pipeline is based on an
algorithm for automated extraction of the lightcurves, and on a
wavelet-based algorithm for the estimation of the initial param-
eter guesses.

O. Fors et al.: A new wavelet-based approach for automated treatment of LO

The pipeline has been tested on a large number of simulated
lightcurves spanning a wide range of realistic signal-to-noise ra-
tios. The result has been completely satisfactory: in all cases in
which the algorithm converged, the derived lightcurve charac-
terization was correct and consistent with the simulated values.
Convergence could not be reached due to poor signal-to-noise
ratio in only in ten cases out of 60000. These cases would, of
course, be challenging for an interactive data analysis by an ex-
perienced observer as well. We also tested the pipeline on a set of
real data, with similar conclusions. We identified and discussed
the cases that may prove problematic for our scheme of auto-
mated preprocessing.
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