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als meus pares



Colour is a power which directly influences the soul. Colour is the key-
board, the eyes are the hammers, the soul is the piano with many strings.
The artist is the band that plays, touching one key or another to cause
vibrations in the soul.

Wassily Kandinsky
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tram. I a l’Anna li hauria d’agrair moltes coses, entre elles suportar el mal gust de les
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Abstract

In this work we present a framework for white point estimation of images under uncal-
ibrated conditions where multiple interpretable solutions can be considered. In this
way, we propose to use the colour matching visual cue that has been proved as re-
lated to colour constancy. The colour matching process is guided by the introduction
of semantic information regarding the image content. Thus, we introduce high-level
information of colours we expect to find in the images. Considering these two ideas,
colour matching and semantic information, and existing computational colour con-
stancy approaches, we propose a white point estimation method for uncalibrated
conditions which delivers multiple solutions according to different interpretations of
the colours in a scene. However, we present the selection of multiple solutions which
enables to obtain more information of the scene than existing colour constancy meth-
ods, which normally select a unique solution. In this case, the multiple solutions are
weighted by the degree of colour matching between colours in the image and semantic
information introduced. Finally, we prove that the feasible set of solutions can be
reduced to a smaller and more significant set with a semantic interpretation.

Our study is framed in a global image annotation project which aims to obtain
descriptors which depict the image, in this work we focus on illuminant descriptors.
We define two different sets of conditions for this project: (a) calibrated conditions,
when we have some information about the acquisition process and (b) uncalibrated
conditions, when we do not know the acquisition process. Although we have focused
on the uncalibrated case, for calibrated conditions we also propose a colour constancy
method which introduces the relaxed grey-world assumption to produce a reduced
feasible set of solutions. This method delivers good performance similar to existing
methods and reduces the size of the feasible set obtained.

iii



iv ABSTRACT



Resum

En aquest treball presentem un marc per a l’estimació del punt blanc en imatges sota
condicions no calibrades, on considerem múltiples solucions interpretades. D’aquesta
manera, proposem la utilització d’una cua visual que ha estat relacionada amb la
constància de color: aparellament de colors. Aquest aparellament de colors està guiat
per la introducció d’informació semàntica referent al contingut de la imatge. Aix́ı
doncs, introdüım informació d’alt nivell dels colors que esperem trobar en les imatges.
Tenint en compte aquestes dues idees, aparellament de colors i informació semàntica,
i les aproximacions computacionals a la constància de color existents, proposem un
mètode d’estimació de punt blanc per condicions no calibrades que lliura múltiples
solucions, en funció de diferents interpretacions dels colors d’una escena. Plantegem
l’extracció de múltiples solucions ja que pot permetre extreure més informació de
l’escena que els algorismes clàssics de constància de color. En aquest cas, les múltiples
solucions venen ponderades pel seu grau d’aparellament dels colors amb la informació
semàntica introdüıda. Finalment demostrem que la solució plantejada permet reduir
el conjunt de solucions possibles a un conjunt més significant, que és petit i fàcilment
interpretable.

El nostre estudi està emmarcat en un projecte d’anotació d’imatges que pretén
obtenir descriptors que representen la imatge, en concret, els descriptors de la llum de
l’escena. Definim dos contextos diferents per aquest projecte: condicions calibrades,
quan coneixem alguna informació del sistema d’adquisició, i condicions no calibrades,
quan no coneixem res del procés d’adquisició. Si bé ens hem centrat en el cas no
calibrat, pel cas calibrat hem proposat també un mètode computacional de constància
de color que introdueix l’assumpció de ’món gris’ relaxada per a generar un conjunt
de solucions possibles més redüıt. Aquest mètode té un bon rendiment, similar al dels
mètodes existents, i redueix el tamany del conjunt de solucions obtingut.

v



vi RESUM



Contents

Acknowledgements i

Abstract iii

Resum v

1 Introduction 1
1.1 Colour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Automatic image annotation . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Colour and imaging 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Human visual system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Colour image formation model . . . . . . . . . . . . . . . . . . . . . . 17
2.4 White balancing in acquisition devices . . . . . . . . . . . . . . . . . . 20
2.5 Colour in computer vision . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Colour invariance in practice 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Colour invariant normalisations . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Chromaticity coordinates . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Comprehensive colour normalisation . . . . . . . . . . . . . . . 29
3.2.3 Comprehensive colour normalisation without foreground . . . . 31
3.2.4 Non-iterative comprehensive colour normalisation . . . . . . . . 33
3.2.5 l1l2l3 normalisation . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.6 m1m2m3 normalisation . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Experiments for skin colour detection using invariant normalisations . 37
3.3.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Colour constancy in practice 47

vii



viii CONTENTS

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Colour constancy review . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Retinex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Gamut mapping approaches . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Bayesian approaches . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Relaxed grey-world . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Experiments and Results . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Performance on computational colour constancy . . . . . . . . . . . . 64

5 Semantic white point estimation 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Colour matching for image interpretation . . . . . . . . . . . . . . . . 74
5.3 The semantic colour matrix . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 A Weighted Feasible Set . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . 80
5.5.2 Interpretation of images . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Selection of significant solutions . . . . . . . . . . . . . . . . . . . . . . 82
5.6.1 Ridge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Summary and conclusions 101
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A Fisonomies project 105
A.1 People detection for appearance description . . . . . . . . . . . . . . . 105

Bibliography 111



List of Tables

3.1 Distance mean and standard deviation for the five macbeth images
using CC, CCN,CCNWF and NICCN normalisations. . . . . . . . . . 35

3.2 Results obtained with the invariant normalisations: chromaticity co-
ordinates (CC), comprehensive colour normalisation (CCN) and non-
iterative comprehensive colour normalisation (NICCN). . . . . . . . . 39

3.3 Results obtained grouping by illuminant with the normalisations: CC,
CCN and NICCN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Comparison of the performance of the two methods. The value shown
is the root mean square of the angular errors computed for the 400
synthetic images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Results of the recovery angular error (RMS over 1000 images in each
set) for the different illuminant sets proposed using CRULE. . . . . . 67

ix



x LIST OF TABLES



List of Figures

1.1 Visible light is a small part of the electromagnetic radiation, which
includes from gamma rays up to radio waves, and that stimulates the
photoreceptors in the human visual system through wavelenghts com-
prised from 400 to 700nm. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Two similar synthesised images consisting of three colours along with
its corresponding grey-level representation (where just the intensity
component is presented): in the first image the three colours have a
different intensity component, but in the second image the intensity
component is the same for the three colours and no shape is recognis-
able if we just consider intensity information. . . . . . . . . . . . . . . 4

1.3 Plain image annotation goal: describe objects and colours in images. . 6

1.4 Example of image annotation aimed by our system, where we do not
deal with shape descriptors. . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Diagram of the different modules/visual tasks of the annotation system,
and their links, that take place in low-level processes. In this work
we focus on the colour constancy module (yellow box), and in the
introduction of colour naming information to help to solve it. . . . . . 9

2.1 Structure of the eye: the retina is the sensor sensible to light. . . . . . 12

2.2 In the retina there are two types of photoreceptor cells: cones and rods.
There are three types of cones, depending to the specific wavelengths
of light to which they are attuned. . . . . . . . . . . . . . . . . . . . . 13

2.3 Spectral absorption curves of the short (S), medium (M) and long (L)
wavelength pigments in human cone and rod (R) cells. . . . . . . . . . 14

2.4 CIE 1931 RGB Colour matching functions. . . . . . . . . . . . . . . . 15

2.5 CIE 1931 XYZ colour matching functions. . . . . . . . . . . . . . . . . 16

2.6 The CIE 1931 colour space chromaticity diagram. The outer curved
portion is the spectral (or monochromatic) locus, with wavelengths
shown in nanometers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 The dichromatic reflection model characterises reflectance as two com-
ponents: diffuse and specular. . . . . . . . . . . . . . . . . . . . . . . . 18

xi



xii LIST OF FIGURES

2.8 Colour image formation for RGB images: each rgb pixel in an image is
the resut of the integration of an illuminant spectra a surface reflectance
and a sensor device. In this case, a yellow trichromatic representation
is obtained from a yellowish reflectance function, a blue-whitish illumi-
nant and a white-balanced sensor. . . . . . . . . . . . . . . . . . . . . 19

2.9 Three images of the same scene under three different illuminants, where
the camera is calibrated for the illuminant of the first image. . . . . . 20

2.10 Frame of model of image formation for images of unknown origin where
both illuminant and sensor are unknown. We propose to unify E(λ)
and R(λ) in a single unknown to recover, which we name acquisition
conditions, Ak(λ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.11 Illuminant and sensor information comprise adquisition conditions, there-
fore the colour image formation model results in the integration of these
adquisition conditions and the given reflectance. . . . . . . . . . . . . 23

2.12 Images from the internet with very different colour representations. . . 24
2.13 Colour invariant normalisations pursue to obtain colour image descrip-

tors which are invariant to the illumination conditions of a scene through
the use of normalisations (f(x)). . . . . . . . . . . . . . . . . . . . . . . 25

2.14 To perform perfect colour constancy the illuminant in a scene must be
measured to properly correct the colours in the image. . . . . . . . . . 26

3.1 Chromaticity diagram obtained by the transformation of the chro-
maticity coordinates to a 2D space. . . . . . . . . . . . . . . . . . . . . 30

3.2 The intensity normalisation for five images of the same scene under five
different illuminants, where the sensor is calibrated for the illuminant
of the first image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 The comprehensive normalisation for five images of the same scene
under five different illuminants, where the sensor is calibrated for the
illuminant of the first image. . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Example of an application where we can segment an object (person)
in the foreground of a scene, since the background is always the same.
Therefore only the pixels in the background might be considered in the
channel normalisation process. . . . . . . . . . . . . . . . . . . . . . . 32

3.5 The comprehensive normalisation without foreground for five images
of the same scene under five different illuminants, where the sensor is
calibrated for the illuminant of the first image. . . . . . . . . . . . . . 33

3.6 The non-iterative comprehensive normalisation for five images of the
same scene under five different illuminants, where the sensor is cali-
brated for the illuminant of the first image. . . . . . . . . . . . . . . . 35

3.7 The l1l2l3 normalisation for an image with highlights. . . . . . . . . . 36
3.8 Different images obtained for a single person in the OULU face data-

base, along with the different illumination and white balancing process. 39
3.9 Five different groups for the different configurations of camera/white

balancing, according to a similarity in the simulated illuminant colours. 40
3.10 Fitting of the gausian models for the five different groups and using

the three normalisations. . . . . . . . . . . . . . . . . . . . . . . . . . . 41



LIST OF FIGURES xiii

3.11 Results of skin segmentation for images from the OULU face database. 43
3.12 Results of skin segmentation for images from internet with unknown

origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.13 Intensity normalisation and comprehensive normalisation for two dif-

ferent images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Composition with Red, Yellow and Blue 1921. Piet Mondrian. Oil on
canvas. 72.5 x 69 cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Scheme and different elements used in Land’s colour constancy exper-
iments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 To build the feasible set of solutions, we consider the illuminant changes,
αβγn, that take the image gamut within the canonical gamut. . . . . . 52

4.4 The feasible set is a convex set in the space of illuminant changes. Any
solution within this set is, by definition, possible and some heuristics
need to be used to select a single solution. . . . . . . . . . . . . . . . . 52

4.5 In the correlation matrix, information of probability distributions of
chromaticities for different illuminants is combined. . . . . . . . . . . . 54

4.6 Information of chromaticities present in an image are combined with
the correlation matrix to obtain a vector with illuminant probabilities.
The illuminant with maximum probability is selected as the estimation
of the illuminant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Relational colour constancy assures that relation between colours re-
main the same despite changes in the illuminant conditions: an illumi-
nant change cannot alter the relation between colours in the image. . . 58

4.8 With the relaxed grey-world assumption, we have to find a set of
nearest-neighbour canonical surfaces for each image surface, when the
grey world map is applied. The image is maped to the center of the
canonical gamut (a),(b) and the nearest-neighbour canonical surfaces
for each image surface are selected as possible pair for the matching
process (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 An illustration of how the relaxed grey world algorithm proceeds. . . . 60
4.10 The synthetic illuminant (a) and sensor (b) used in the experiments. . 61
4.11 Comparison of the sets of maps generated with CRULE (blue dots)

versus the set of maps generated with our method (yellow dots) for 6
different images. In the x-axis it is represented the recovery angular
error and in the y-axis the volume of the image gamut generated. . . . 63

4.12 xy chromaticities of the set of 11 illuminants of the Simon Fraser data
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.13 xy chromaticities of the set of 87 illuminants (a) and the set of 287
illuminants (b) of the Simon Fraser data set. . . . . . . . . . . . . . . 66

4.14 Chromaticity area enclosed by the 7 different synthetic illuminant sets
created for the experiment (a-g). . . . . . . . . . . . . . . . . . . . . . 68

5.1 Problem in computer vision: ’what is the color of the apples?’ . . . . . 73



xiv LIST OF FIGURES

5.2 In the colour matching problem, we have to pair surfaces of the same
scene that are perceived as the same colour under different illuminants,
in the example a red and a blue light. . . . . . . . . . . . . . . . . . . 75

5.3 Possible SM matrices target oriented: depending on the types of im-
ages we have to deal with we have to construct the corresponding SM
matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 SM matrix obtained considering the 11 focals of the colour naming
experiment, plus skin colour focals, and the canonical acquisiton con-
ditions defined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Results of an image with apples. The method derives 2 different inter-
pretations: red apples and green apples, whereas in the original image
the apples appear yellow. . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Illuminant interpretations of an image along with the semantic inter-
pretations that have delivered them. . . . . . . . . . . . . . . . . . . . 83

5.7 Results for images of the Simon Fraser database. For each image we
show a set of possible illuminant estimations along with their semantic
interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.8 Results for images from the Simon Fraser data set (2). . . . . . . . . . 85
5.9 Results for images from the Simon Fraser data set (3). . . . . . . . . . 86
5.10 Results for images from the Simon Fraser data set (4). . . . . . . . . . 87
5.11 Results for images from the Simon Fraser data set (5). . . . . . . . . . 88
5.12 Results for images from the Simon Fraser data set (6). . . . . . . . . . 89
5.13 A one dimensional distribution with 2 local maxima, where other points,

Pi, are useful to establish a relation between the local maxima. . . . . 90
5.14 Different cases of a ridge point: (a) local maximum, (b) p1 is a ridge

point but not a peak, then, just p2 can be higher, and (c) p1 is a local
minimum of the ridge because both p2 and p3 are higher. . . . . . . . 93

5.15 Ridges extraction from the weighted feasible set for a Simon Fraser
image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.16 Profile of the ridges extracted from the weighted feasible set for a Simon
Fraser image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.17 Corrected images for the maximum correlation of each ridge and a label
of the illuminant colour of the scene. . . . . . . . . . . . . . . . . . . . 95

5.18 Ridges extraction from the weighted feasible set for a second Simon
Fraser image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.19 Profile of the ridges extracted from the weighted feasible set for a second
Simon Fraser image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.20 Corrected images for the maximum correlation of each ridge and a label
of the illuminant colour of the scene. . . . . . . . . . . . . . . . . . . . 97

5.21 Ridges extraction from the weighted feasible set for a third Simon
Fraser image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.22 Profile of the ridges extracted from the weighted feasible set for a third
Simon Fraser image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.23 Corrected images for the maximum correlation of each ridge and a label
of the illuminant colour of the scene. . . . . . . . . . . . . . . . . . . . 98



LIST OF FIGURES xv

A.1 Scheme of the registration process which involes our system. . . . . . . 106
A.2 Sample images from the entrance of the building we have to deal with. 107
A.3 The different steps in the description/retrieval system: constructing

the appearance feature vector in the registration. . . . . . . . . . . . . 108
A.4 The different steps in the description/retrieval system: formulating a

query on the people who have been registered entering the building. . 108
A.5 The different steps in the description/retrieval system: the results of

the query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



xvi LIST OF FIGURES



Chapter 1

Introduction

In this chapter, we present colour as an important cue to deal with visual tasks for
image understanding. Then, we present an image annotation project in which we
will aim to obtain illuminant invariant descriptors from the coloured surfaces of an
image. We propose a frame of different low-level visual tasks concerning this anno-
tation process, and we will focus on the module that aims to obtain these invariant
descriptors, labelled as white point estimation. This module directly influences the
colour naming task, which subsequently aims to give a name to the colours in the im-
age. We will propose to introduce information of this colour naming process to guide
the white point estimation process and, therefore, to obtain useful descriptors from
the image. Finally, we present the thesis outline that will follow this dissertation.

Colour plays an important role in the understanding of the world that we see.
When looking at a real scene, the colour of an object sometimes defines its properties
and allows us to interact within it. For instance, the colour of a traffic light indicates
whether we must stop or go on. Also, colour is an important feature to identify types
of mushrooms and to distinguish the edible from the toxic ones. More examples could
be found to depict the significance of colour to understand the world and interact
with it. Thus, colour is a powerful visual cue that delivers important information of a
scene and, in this way, it helps to infer properties of its content. Colour perception in
the human visual system is a trichromatic process base on the three different types of
photoreceptors we have in the retina. If we had a single type of photoreceptors, then
we would live in a grey world. Therefore we could only perceive intensity of some
light, which is true for some animals that are not able to process the multispectral
information of the light. The interaction with the world would be harder, since our
visual system should have to further hypothesise about the real world than actually
has to. In fact, this situation happens under small amounts of light, normally at
night, when only one type of photoreceptors, rods, are excited, and it is more com-
plicated to perform some tasks, since we get less information of what surrounds us.

1
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Therefore, colour perception makes the interaction with the real world easier. Also it
is considered to make life more exciting.

In this work we study how colour information can be considered in computer vi-
sion, which pursues the final goal of automatic image understanding. Computer vision
is a subfield of artificial intelligence which research methods which allow computers
to understand image content, and focuses on theoretical studies of visual information
processing [71]. Computer vision aims to understand the context in which a system is
placed, using a visual sensor. Also, and therefore, computer vision aims to understand
the human visual system as an information processing system. The model presented
by Marr in [65] presents vision as a bottom-up process where the goal is to develop
vision modules which obtain image attributes, that are able to infer information of the
scene it represents. Considering that this way of working implies to solve an ill-posed
problem, since an image is just a projection of the real scene, then we need some
constraints to solve this kind of problems. Thus, the general bottom-up approach has
not led to the design of successful vision systems and in [1] a new paradigm for com-
puter vision is proposed: purposive vision. In this paradigm, methods are designed
task-oriented and avoid creating an accurate description of the scenes. Our proposal
will be given in this frame where high-level information will reduce the uncertainty
of the multiple solutions. But we will come later, at the end of the thesis, to this point.

Colour is an important cue in vision and it delivers significant information about
the real world. Therefore, colour should be considered if we want to improve our
computer vision algorithms and go further in the computational understanding of the
world, but it must be done carefully. A coloured image is usually obtained using a
camera that acquires the light reflected by a given scene through three different filters,
emulating the three types of photoreceptors involving colour in the human visual sys-
tem, known as: red, green and blue filters. However, since light reaching the camera
depends on the illumination of the scene, to obtain reliable colour image descriptors
this influence from the illuminant should be removed. For this reason, colour needs
a processing when used in computer vision. In this dissertation we study what does
a processing mean, and we also present different computational approaches to deal
with colour, along with some tasks in which they are used.

1.1 Colour

Colour must be carefully taken into account, since it is a perception and the physical
stimulus is altered by more complex processes. The sensation of colour is produced in
the human visual system, HVS from now on, through the integration of the informa-
tion obtained by three kinds of photoreceptors, cones, which have different response
curves (they respond to variation in light in the visible spectrum in different ways).
Visible light is a small part of the electromagnetic radiation, composed of streams
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of photons, which are visible by the human visual system (figure 1.1). The HVS
combines the information from each type of photoreceptor to give rise to different
colour perceptions for different wavelengths of light. Thus, the multidimensional
information contained in the visible light reaching the retina is reduced to a three
dimensional representation, which gives place to what is known as colour descrip-
tion. Actually, the perception of colour involves more than dimensionality reduction
to a three-dimensional space. There are different works that have studied how the
human visual system perceives colour [98, 51, 54, 58, 72, 57]. In [51, 54, 72] math-
ematical models are proposed to predict the colours perceived by a subject under
given conditions. Land in [57] proposes a theory to explain how the constant percep-
tion of colours despite changes in the illumination, i.e. colour constancy, is performed.

Figure 1.1: Visible light is a small part of the electromagnetic radiation, which
includes from gamma rays up to radio waves, and that stimulates the photoreceptors
in the human visual system through wavelenghts comprised from 400 to 700nm.

In computer vision a large amount of methods have been defined for grey-level
images, since it is easier and therefore they involve less complex algorithms, and in a
lot of visual tasks the intensity information is sufficient to solve the task. However, in
some cases intensity information is not enough to perform some visual tasks and colour
has to be considered to achieve better results. The three-dimensional representatioin
of colour can be separated into two components: intensity and chromaticity. Intensity
is the brightness of the colour and chromaticity is the quality of colour independent
of brightness. In figure 1.2 we show a plain example of the significance of colour
information. We have built two similar synthetic images consisting of three different
colours: in the first image the colours have different intensity component, whereas in
the second image the three colours have the same intensity value. We show the colour
image and its intensity component, which corresponds to its grey-level representation.
If we just consider the grey-level image, unless there is some intensity variation,
no shape is recognisable, while in the colour image we can distinguish the different
shapes in both images. It is clear, that if we aim to find shapes in this type of images,
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colour information should be considered to avoid the problem of images with constant
intensity.

Figure 1.2: Two similar synthesised images consisting of three colours along with
its corresponding grey-level representation (where just the intensity component is
presented): in the first image the three colours have a different intensity component,
but in the second image the intensity component is the same for the three colours
and no shape is recognisable if we just consider intensity information.

On the other hand, the colour of a digital image is always depending on the
illuminant of the scene. In order to deal with this dependency, different approaches
have been proposed. They can be classified as follows:

• Invariance normalisations [33, 48].

• Colour constancy methods:

– Illuminant transformations to a reference illuminant [40, 31, 38].

– Recovery of spectral information of illuminant and surfaces of a scene [64,
27, 18, 74].



1.2. Automatic image annotation 5

These approaches will be presented in more detail in following chapters. Depend-
ing on the visual task we have to perform and the amount of available information
about a scene, we will choose within them. For this reason, introducing colour infor-
mation to an image processing method is not a trivial step. The different approaches
must be analised and adapted to the task that we are dealing with.

1.2 Automatic image annotation

When we look at a picture we figure out the scene that it represents by considering
the shapes and the colours in it we interpret how was the scene when the picture
was taken. This is one of the goals of computer vision, to understand a scene and
to be able to interact within it. A system that completely understands a scene is a
highly ambitious goal, and may not be affordable. Even to understand the same as
human beings understand through HVS is not manageable. For this reason, and in a
similar way to what has happened in artificial intelligence, computer vision has been
subdivided in different tasks, each of them performs a concrete visual task: tracking
[59], object recognition [49], colour segmentation [70], shape extraction [47], etc. Each
of these processes aim to create a model of a scene for a given image. This model
should be a representation that enables us to interact with the real world in a useful
way.

Image understanding is a high-level visual task, which comprises some of the vi-
sual tasks defined before. To interpret a scene is to describe it in terms of descriptors,
i.e. to give meaning to its elements. There can be different levels of complexity in
the description, depending on the descriptors used and our goal in the problem.

Image annotation is an example of scene interpretation (figure1.3). We are given an
image and we are asked to detail the different shapes that can be found in it, and also
colour and texture properties for each different shape. And sometimes the relations
between the shapes. Automatic image annotation is a process by which a computer
system automatically assigns metadata in the form of captioning or keywords to a
digital image. For instance, it is used in image retrieval systems to automatically or-
ganise and locate images of interest from a database. This image annotation process
can have different levels of complexity, which depend of the dictionary of descriptors
that we are dealing with. We could consider a dictionary with just ’round’, ’squared’
and ’triangle’ shapes and ’red’, ’green’, ’blue’, ’yellow’, ’black’ and ’white’ colours,
which is a simple model, or a dictionary with ’car’, ’tree’, ’dog’, ’house’, etc. and
a much larger set of colours, which is more complex, and therefore involves a more
complex process to analyse images.

In any case, some processing of colour information should be performed. This
processing can be performed in different ways, depending on the information we know
and the goal of our system. Invariant normalisations look for illuminant invariant im-
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Figure 1.3: Plain image annotation goal: describe objects and colours in images.

age descriptors, and they do not need to know information of the acquisition process
of the image. If we know the spectral properties of the illuminant of the scene, the
sensitivity curves of the camera and the response of the camera for a white under
the illuminant, colour correction can be perfectly performed. Sometimes with just
the response of the camera under a white illuminant it is enough. We might know
nothing of the illuminant and the white response, but know the sensitivity curves of
the camera. And so on. Different methods have been proposed according to the infor-
mation available. The worst case is when we do not dispose of any kind of information
and we have to do some colour correction or process to be able to trust the colours in
an image. This worst case is quite common when dealing with images from unknown
origin, such as internet images. This worst case is the case we are more interested in.
What can we say about the colours in an image that we do not know how has it been
acquired? This is one of the questions that we will try to answer in this work.

1.3 Framework

The thesis work we are presenting here is framed in a context of automatic image an-
notation project. We are working in a system that aims to assign different descriptors
to an image according to its content. This can be seen as an image understanting
process, since we give meaning to what can be seen in it. In our system, we define
four types of descriptors for the annotations of an image: illuminant, colour, texture
and location. Our colour and texture group is not dealing with shape descriptors,
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which deliver significant information of the images but are out of the scope of our
research lines. Each of these descriptors has a set of dictionaries that can be used.
For instance, a dictionary for colour could be:

c1 = {red, green, blue, yellow, ...}

Illuminant might have two different dictionaries :

d1 = {sunnyday, cloudyday, tungsten, f luorescent, ...}

and

d2 = {D65, A, B, C, ...}

And so on. These dictionaries are not fixed and should be customised to work for
concrete contexts. In figure 1.4, we show an example of the annotation aimed by our
system.

Figure 1.4: Example of image annotation aimed by our system, where we do not
deal with shape descriptors.

To simplify this automatic annotation system we have divided it in modules that
perform distinct visual tasks. In figure 1.5 we present a diagram of the modules for
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the low-level tasks that must be performed and the different relations between them.
The input of the diagram is a digital image and the output is a set of descriptors fig-
ured out, arranged for subsequent higher-level visual processes. Each of the modules
performs tasks that cannot be considered independently, since they are closely related
to the other modules as it is marked in the figure.

Some work related to the local induction effects module and its relation with
colour and texture representation is presented in [96]. Also, some work related to
colour combined with texture information to obtain clothes descriptors is presented
in [16]. However, in this work we will center in the colour constancy module (yellow
box in figure 1.5), which aims to extract illuminant descriptors from the image and
also to balance its colours for a better processing in the next modules. To properly
perform a colour naming task it is required a colour constancy module. Also, in this
work, we propose that in some cases colour naming can help to solve the colour con-
stancy problem.

The image annotation system can be developed to work under different conditions.
We define two types of contexts, according to the information that we know of the
acquisition conditions:

• Calibrated conditions: we do know some information regarding the sensor,
and the scene is, more or less, constant (e.g. a surveillance sytem that controls
the entrance of a building).

• Uncalibrated conditions: we do not know the sensor and the scene is com-
pletely unpredictable (e.g. images from the internet).

In this work, we will consider both contexts, and we will present different computa-
tional approaches to obtain reliable colour descriptors from images independent from
the illuminant conditions. For calibrated conditions, we will present methods which
aim to recover the illuminant of the scene or to obtain colour invariant descriptors
from the image. For uncalibrated conditions, since it is a less restricted problem, we
will not look for a perfect recovery of the illuminant, but for a white point estimation,
i.e. response of a white patch as it would be in the scene, which delivers meaning to
the elements in the scene. In this way, the colour constancy module will be guided
by the colour naming module, which will introduce high-level information of expected
colours in the image, i.e. colours with a name. This colour naming information will be
used in a process of colour matching. The colour naming module will not be limited
to classical colour naming names, which are synthetic colours such as red, yellow and
green, and different contexts will be able to be considered to define expected colours
in our image annotation system. Hence, if we deal with natural images, we will be
able to use a colour naming module that delivers colour names such as tree color, sky
colour, etc. and it will guide the colour constancy module that we are working in to
obtain different meaningful colour transformations.
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Figure 1.5: Diagram of the different modules/visual tasks of the annotation system,
and their links, that take place in low-level processes. In this work we focus on the
colour constancy module (yellow box), and in the introduction of colour naming
information to help to solve it.
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1.4 Thesis outline

This dissertation has been structured in six chapters. In chapter 2 we detail the
process of image formation, the different elements involved in it and how does colour
is obtained. It is necessary to study the formation of a coloured image to be able to
subsequently deal with colour. In chapter 3 we present colour invariance approaches
to deal with colour in images, which do not require additional information apart from
the image and deliver image descriptors which aim to be invariant to the illuminant of
the scene. An application in colour modelling for segmentation is presented along with
the performance of some of the invariant normalisations. In chapter 4 computational
colour constancy methods are presented. These methods aim to recover the illuminant
of an image and use it to colour correct it. We propose a new colour constancy method,
combining ideas of the existing approaches, and some experiments are shown to prove
its performance. Also, we study the space of feasible solutions of these methods and
propose some hints to improve the selection step. Next, in chapter 5, we reformulate
the problem for the image annotation frame under uncalibrated conditions and we
propose a colour correction method that considers different white point interpretations
according to the scene content. Finally, in chapter 6 we present some conclusions
derived from the work, along with our contribution in the colour correction field and
the future directions that we think that might be interesting to go further.



Chapter 2

Colour and imaging

To understand how colours we perceive from a scene are affected by the illuminant
conditions, first we need to study the process of image formation. In this chapter,
we present the process of how HVS perceives colour and also how colour can be
represented considering this process. This will lead us to look at the image formation
model, that is the physical process that allows to build digital images. Then, we
present the colour correction process that is performed when acquiring digital images
to obtain a white balanced image. Since in computer vision we do not normally
know any sensor information, we propose a framework where both illuminant and
sensor are unknowns, to perform some colour correction to obtain a white balanced
image. Finally, we present different ways to proceed to process colour for image
interpretation according to the known information of the acquisition system and the
goal of our computer vision system.

2.1 Introduction

The process of producing a coloured digital image of a scene involves different steps.
The light reaching a sensor device is a combination of the scene illumination and the
reflectance properties of the objects in the scene. A colour digital camera is normally
composed by a lens, three colour filters, an image sensor (CCD or CMOS) and a
storage memory. The lens focuses light rays on the image sensor, through the colour
filters. The colour filters deliver different responses for a given range of wavelengths.
An image is formed in the image sensor, and then it is stored in a memory. This
architecture is not arbitrary, but it has been inspired by the HVS. Therefore, to un-
derstand it, it is useful to previously study the HVS, how a colour image is formed,
and also the different elements involved in it.

11
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2.2 Human visual system

The structure of the human visual system (HVS) has been a source of inspiration
to create cameras for imaging. HVS is the part of the nervous system which allows
humans to see. It interprets the information from visible light reaching the eyes to
build a representation of the world surrounding the body.

The eye (figure 2.1) is a biological device, whose operation has inspired digital
cameras, taking visible light and converting it into a stream of information that can
be transmitted via nerves. HVS is a very complex system that processes these signals
and subsequently generate the image representation that we perceive from our envi-
ronment.

Light entering the eye is refracted as it passes through the cornea. Then, it passes
through the pupil, controlled by the iris by contracting or dilation in order to regulate
the intensity of light entering the eye, and is further refracted by the lens. The lens
inverts the light and projects an image onto the retina.

Figure 2.1: Structure of the eye: the retina is the sensor sensible to light.

The retina (figure 2.2) consists of a large number of photoreceptor cells which
contain a particular protein molecule: the photopigment called rhodopsin [100, 73].
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When rhodopsin is struck by a photon (a particle of light) it transmits a signal to the
cell: the more photons strike the cell, the stronger the signal will be. There are two
types of photoreceptor cells: rods and cones. In some animals, like humans, cone cells
contain cone opsin molecules attuned to specific wavelengths of light; i.e., a blue cone
cell contains opsin most attuned to blue-wavelength light and will most strongly be
stimulated by blue-wavelength light, while a yellow-red cone cell will only be weakly
stimulated by blue-wavelength light. This gives the ability to distinguish colour.

Figure 2.2: In the retina there are two types of photoreceptor cells: cones and rods.
There are three types of cones, depending to the specific wavelengths of light to which
they are attuned.

The HVS has three types of cones (k = 3) which are associated with red, green
and blue: short (S), medium (M) and long (L) wavelengths respectively. For this
reason HVS is known as a trichromatic system. Rods are stimulated at low intensity
light and get saturated before the cones, since they are sensitive enough to respond
to a single photon of light, whereas cones require tens to hundreds of photons to be-
come activated. Thus, they are normally active under low intensity environments and
give place to achromatic images. For this reason they are not normally considered in
colour perception. The spectral absorption curves of the three types of cones and of
the rods are shown in figure 2.3.

The study of the perception of colour of the HVS arrived at an important stage
in 1931 when the International Comission on Illumination (CIE) proposed one of the
first mathematically defined colour spaces: CIE XYZ colour space [100]. The fact that
the human eye has three types of receptors means that there are needed, in principle,
three parameters to describe a colour sensation. Therefore, they created a method for
associating three numbers (or tristimulus values) with each colour, based on direct
measurements of the human eye. Experiments were performed using a circular split
screen 2 degrees in size. On one side of the field a test colour was projected and on the
other side, an observer-adjustable colour was projected. The adjustable colour was a
mixture of three primary colours, each with fixed chromaticity, but with adjustable
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Figure 2.3: Spectral absorption curves of the short (S), medium (M) and long (L)
wavelength pigments in human cone and rod (R) cells.

brightness.

The observer would alter the brightness of each of the three primary beams until
a match to the test colour was observed. Not all test colours could be matched using
this technique. When this was the case, some of the primaries could be added to
the test colour, and a match with the remaining primaries was carried out with the
variable colour spot. For these cases, the amount of the primary added to the test
colour was considered to be a negative value. In this way, the entire range of human
colour matching could be measured. When the test colours were monochromatic, a
plot could be made of the amount of each primary used as a function of the wave-
length of the test colour. These experiments gave place to three functions, r, g and
b, that are known as CIE 1931 RGB colour matching functions (figure 2.4).

Having developed an RGB model of human vision using the CIE RGB matching
functions, the members of the commission aimed to develop another colour space,
CIE XYZ, which should be related to the CIE RGB colour space, but chosen to have
the following desirable properties:

• The new colour matching functions, x, y and z, were to be positive everywhere.

• The y colour matching function would be exactly equal to a previously defined
luminous efficiency function V (λ) for the ”CIE standard photopic observer”
[22]. The luminance function described the variation of perceived brightness
across the different wavelengths. The fact that the luminance function could be
constructed by a linear combination of the RGB colour matching functions was
not guaranteed by any means but might be expected to be nearly true due to
the near-linear nature of human sight.
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Figure 2.4: CIE 1931 RGB Colour matching functions.

• For the constant energy white point, it was required that X=Y=Z=1/3.

• Since the requirement of positive values of x and y (normalised values of X and
Y), it can be seen that the xy gamut of all colours would lie inside the triangle
defined by coordinates (0,0), (1,0) and (0,1). It was required that the gamut fill
this space practically completely.

• It was found that the z colour matching function could be set to zero above
650 nm while remaining within the bounds of experimental error. Again, it was
specified that this would be so, for computational simplicity.

Therefore, following these desirable properties, the CIE XYZ colour space was
defined. In the CIE XYZ colour space, the tristimulus values are not the S, M, and
L stimuli of the human eye, but rather a set of tristimulus values called X, Y, and
Z, which are also roughly red, green and blue, respectively. Two light sources may
be made up of different mixtures of various colours, and yet have the same colour
representation (metamerism). If two light sources have the same apparent colour,
then they will have the same tristimulus values, no matter what different mixtures
of light was used to produce them. In figure 2.5 we show the x, y and z functions
proposed to be taken as a standard observer.

This colour space was designed so that the Y parameter was a measure of the
brightness of a colour. Therefore, a chromaticity space was defined by two parameters
which are functions of all three tristimulus values X, Y and Z,

x =
X

X + Y + Z

y =
Y

X + Y + Z
(2.1)
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Figure 2.5: CIE 1931 XYZ colour matching functions.

Thus, a chromaticity diagram is derived (figure 2.6). The diagram represents all
of the chromaticities visible to the average person. These are shown in colour and this
region is called the gamut of human vision. The gamut of all visible chromaticities on
the CIE plot is the tongue-shaped or horseshoe-shaped figure shown in colour. The
curved edge of the gamut is called the spectral locus and corresponds to monochro-
matic light, with wavelengths listed in nanometers. The straight edge on the lower
part of the gamut is called the purple line. These colours, although they are on the
border of the gamut, have no counterpart in monochromatic light. Less saturated
colours appear in the interior of the figure, with white at the centre. All visible chro-
maticities correspond to positive values of x and y. If one chooses any two points on
the chromaticity diagram, then all colours that can be formed by mixing these two
colours lie between those two points, on a straight line connecting them. It follows
that the gamut of colours must be convex in shape. All colours that can be formed
by mixing three sources are found inside the triangle formed by the source points on
the chromaticity diagram, and so on for multiple sources. The mixture of two equally
bright colours will not generally lie on the midpoint of that line segment. In more
general terms, a distance on the xy chromaticity diagram does not correspond to the
degree of perceived difference between two colours.

CIE colour matching functions have been very important in the study and devel-
opment of computational colour, since colour is a subjective (referred to the HVS)
perception of the physical properties of the surfaces.
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Figure 2.6: The CIE 1931 colour space chromaticity diagram. The outer curved
portion is the spectral (or monochromatic) locus, with wavelengths shown in nanome-
ters.

2.3 Colour image formation model

Once we have explained how the HVS works with colour, now we are ready to explain
how colour digital images are built to simulate colour perception. To form a digital
image of a scene, we need a receptor device that captures the light reflected by it.
Geometrical and reflectance properties of surfaces are combined along with spectral
information of the scene illuminant and captured by the receptor.

Shafer in [76] proposes the dichromatic reflection model to describe reflections in
object surfaces. He describes surface reflectance as a linear combination of diffuse
and specular components. Thus, a surface reflects the incident light in two different
components: specular and diffuse reflections, also known as surface albedo and Fres-
nel reflection. The formulation of the model is,

ρk = mb(�n,�s)
∫

E(λ)Cb(λ)Rk(λ)dλ + ms(�n,�s, �v)
∫

E(λ)Cs(λ)Rk(λ)dλ (2.2)

where E(λ) is the spectrum of the incident light, Rk(λ) are the sensitivity curves
of the acquisition device (for the k-th sensor) and Cb and Cs are the surface albedo
and Fresnel reflectance respectively. �n is the surface patch normal, �s is the direction
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of the illumination source and �v is the direction of the viewer. Geometric terms mb

and ms denote the geometric dependencies on the body and surface reflection compo-
nent respectively. Specular reflection in a surface point is given at a concrete viewing
angle, whereas diffuse reflection is normally constant at all angles of view (figure 2.7).

Figure 2.7: The dichromatic reflection model characterises reflectance as two com-
ponents: diffuse and specular.

Frequently, in computer vision the dichromatic model is simplified and the spec-
ular component is taken out, since most of the colour information in images come
from the diffuse reflection. This simplification is known as the Lambertian reflectance
model, which just considers diffuse reflection. When dealing with colour, highlights
might seem interesting to be considered, because they are a direct reflection of the
incident light, and they could be used as illuminant descriptors of the scene [60, 81].
Nevertheless, highlights usually produce saturated regions in images, due to an ex-
cess of exposure to the light. Also, to study colour, we will not consider the geometry
terms of the surfaces, since they do not normally affect to chromaticity perception.

Hence, in the simplified colour image formation model, an image is the result of
the integration of the spectrum of the illuminant, the reflectance functions of the
surfaces in the scene and the sensitivity curves of the sensor through wavelenghts
corresponding to visible light, usually from 400 to 700nm. The reflectance function
is the ratio of reflected power by a surface. The colour response of an imaging device
is given by eq. 2.3,

ρk =
∫

E(λ)S(λ)Rk(λ)dλ (2.3)

where E(λ) is the spectra of the illuminant, S(λ) is the reflectance function of
the surface (surface albedo) and Rk(λ) are the sensitivity response curves of the ac-
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quisition device (with k sensors). When k = 1 we have a single type of sensor and
a grey-level intensity image if formed, and when k = 3 we refer of coloured images,
since it is the number of photoreceptors that the HVS uses to perceive colour. In this
way, a colour RGB image is formed,

ρ1 = R =
∫

E(λ)S(λ)R(λ)dλ

ρ2 = G =
∫

E(λ)S(λ)G(λ)dλ

ρ3 = B =
∫

E(λ)S(λ)B(λ)dλ (2.4)

where R(λ), G(λ) and B(λ) are the sensitivity curves of the RGB camera. In
figure 2.8 we show the image formation for RGB images. Finally, when k > 3 we
have multispectral images, which contain more information of the physical properties
of the surfaces in the scene than the previous images. There are acquisition devices
to acquire these different types of images.

Figure 2.8: Colour image formation for RGB images: each rgb pixel in an image is
the resut of the integration of an illuminant spectra a surface reflectance and a sensor
device. In this case, a yellow trichromatic representation is obtained from a yellowish
reflectance function, a blue-whitish illuminant and a white-balanced sensor.
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2.4 White balancing in acquisition devices

The image formation model presented in previous section might not give the expected
response when acquiring a white surface, where we normally expect the same maxi-
mum response in all the channels. Depending on the illumination conditions in which
the white surface is viewed the model will deliver different coloured responses. Nev-
ertheless, HVS perceives a white surface as white, whether viewed under daylight,
a fluorescent or a light bulb. This ability of the HVS is called chromatic adapta-
tion or colour constancy. Colour constancy ability ensures that the perceived colour
of objects remains relatively constant under varying illumination conditions. This
means, basically, to remove the effect of the illuminant when viewing a scene. A
simple theory about how the HVS performs it is represented by the von Kries coef-
ficient rule algorithm [98], where the gain of each class of photoreceptor is adjusted
independently to obtain surface colour descriptors which are invariant to changes of
illuminant. The factors, by which the gains are adjusted, are called coefficients, and
they can be represented by a 3x3 diagonal matrix. Land in [57] proposed a theory of
how colour constancy is achieved by the HVS. We will review it in chapter 4.

Therefore, for digital imaging it is interesting to perform a similar adaptation
process to correct the colours of an acquired image, so that white is a balanced max-
imal response. In controlled systems, to obtain reliable colour images, sensor devices
are normally calibrated for the given illuminant, in order to make that a white sur-
face delivers the maximum response for all the channels. This process is known as
calibration or white balancing, and normally consists of a scaling the response of each
channel.

In figure 2.9 we show an example of three images of the same scene [8] under three
different illuminants, where the calibration or white balancing has been performed
for the illuminant of the first image. In the other two images, colours appear biased
and should be subsequently corrected to obtain a perceptually good coloured image
of the scene.

Figure 2.9: Three images of the same scene under three different illuminants, where
the camera is calibrated for the illuminant of the first image.

The problem is that we do not always deal with a controlled system, and devices
cannot be calibrated. In these cases, there exist a wide literature of methods to deal
with this problem and therefore perform some illuminant estimation. These methods
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will be reviewed in next chapters. When the white balancing process is not properly
done, or there is no process of device calibration, the colours in an image do not rep-
resent physical properties of the surfaces in the scene. It is important to know, when
possible, if the images we have to work with have been acquired with a calibrated
device or not, or if we know the response of a camera for a white surface (in which
case we can perform the white balancing process after the image has been acquired).
Otherwise, we will have to consider just the different existing approaches to work with
uncalibrated systems.

We will fix a framework to deal with images from unknown origin. In the colour
image formation model proposed in section 2.3, there are three different elements to
consider: the scene illuminant, the reflectance of the surfaces in the scene and the
sensor curves of the acquisition device. In computer vision, we usually do not know
either the illuminant or the spectral sensitivity of the sensor used in the acquisition.
In this conditions we deal with a frame of image formation model like shown in figure
2.10, where the only information we know is the acquired image.

Figure 2.10: Frame of model of image formation for images of unknown origin
where both illuminant and sensor are unknown. We propose to unify E(λ) and R(λ)
in a single unknown to recover, which we name acquisition conditions, Ak(λ).

The pixels in the image could be surface descriptors of the scene if the acquisition
device was calibrated, but both unknown illuminant and sensor bias their values. To
properly white balance the image we should know the two of them, or at least the
sensor responses of a white surface under the illuminant. Since in this frame we know
none of them, we reformulate the colour image formation model to unify these two
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unknown parameters (illuminant and sensor) into a single unknown parameter, which
we name acquisition conditions. Hence, for this frame we propose to guess this single
parameter to subsequently correct the images. We define the acquisition conditions of
an image, Ak(λ), which integrate the illuminant and the sensor information, in eq. 2.5,

Ak(λ) = E(λ)Rk(λ) (2.5)

Therefore, the colour image formation model becomes,

ρk =
∫

S(λ)Ak(λ)dλ (2.6)

This reformulation aims to reduce the number of unknowns in the problem, since
in this frame there are no ways to recover both unknown parameters. Therefore we
will assume that the bias of the colours in an image might be due to a biased illumi-
nant or to a wrong balanced sensor. In this way we perform a white point estimation
process, where we aim to obtain the response of a white patch for the unknown ac-
quisition conditions. This reformulation will be referred in chapter 5. In figure 2.11
we show the unification of these two parameters in the colour image formation model.
Figure 2.11(a) represents the image formation model for calibrated conditions, where
we aim to estimate the illuminant of the scene, and figure 2.11(b) the model for un-
calibrated conditions, where we aim to estimate a white point, i.e. the response of a
white patch under these acquisition conditions.

2.5 Colour in computer vision

In computer vision we can work with images of different origins. When we deal with
calibrated devices in a controlled system, we can rely on the colours given by acquired
images, and they can be used in further analysis where colour information is needed.

When we deal with uncalibrated devices, i.e. the sensor curves are not known to
be white balanced or in an uncontrolled environment where we know them but we do
not know the spectra of the illuminant, the colours might be biased. This latter case
of uncalibrated conditions is quite common, since we are not always able to procure
a controlled context with constant illumination or, even worse, we might be deal-
ing with images from unknown origin, such as images from the internet. Normally,
with images obtained from the internet colours appear to be white balanced and the
HVS can interpret them, even though if we compare the values of similar perceived
coloured regions in them, or at least with the same meaning for us, they result to
be quite different. This might be either because different sensors have been used for
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Figure 2.11: Illuminant and sensor information comprise adquisition conditions,
therefore the colour image formation model results in the integration of these adqui-
sition conditions and the given reflectance.

their acquisition or because different white balancing processes have been performed.
In figure 2.12 we show different images obtained from internet, where there are skin
and sky colour regions. If we take the skin regions out of the image, we can observe
that the colours are very different, but for us they have the same meaning. The same
happens with the sky regions. The images appear white balanced, but colours are
very different, which might be due to different acquisition conditions.

There is a wide literature of colour processing methods which aim to use colour
with reliability in computer vision methods, since it is an important and useful source
of information. There are two main approaches to deal with colour: colour invariant
normalisations and colour constancy methods.

Colour invariant normalisations [33, 48, 34, 97, 35, 36] look for image descrip-
tors invariant to some image features such as illuminant intensity, illuminant colour,
surface geometry or highlights. Hence, a normalisation of the pixel values in the im-
age is performed to achieve this invariance (figure 2.13). Images are transformed to
such invariant colour spaces, and sometimes the structure of the colours in the image
is lost. Surface descriptors obtained with these methods are related to the rest of sur-
faces in the image and cannot be considered as reliable descriptors of the reflectance
properties of the surfaces.

Colour constancy methods try to recover the scene illuminant, in order to be
able to remove it from the image, that is, to put the image under a white balanced illu-
minant 2.14, known as canonical illuminant. Land in [55] proposed a theory of how the
HVS performs colour constancy, from which a computational colour constancy method
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Figure 2.12: Images from the internet with very different colour representations.
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Figure 2.13: Colour invariant normalisations pursue to obtain colour image descrip-
tors which are invariant to the illumination conditions of a scene through the use of
normalisations (f(x)).

can be derived [56]. Then, there are methods that try to recover descriptors of the
spectral power distribution of the illuminant of a scene [64, 27, 28, 29, 18, 74], which
afterwards can be used to colour correct the illumination of the image. These methods
do not normally perform well for rgb images. And there are methods which aim to
estimate illuminant transformations to the canonical illuminant [19, 40, 31, 45, 38].
These methods can be classified following different criteria, in chapter 4 we propose
a classification according to the information we know from the system. Surface de-
scriptors obtained with all these methods should be considered as reliable descriptors
of the reflectance properties of the surfaces, when colour constancy is perfectly per-
formed.

In the following chapters we will show these approaches in more detail.
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Figure 2.14: To perform perfect colour constancy the illuminant in a scene must
be measured to properly correct the colours in the image.



Chapter 3

Colour invariance in practice

In this chapter, we present some invariant normalisations, which aim to obtain image
descriptors invariant to the illuminant conditions of the scene. First, we propose a
hypothesis to recommend when to use them. After presenting the normalisations,
we use them for a problem of skin colour segmentation, which is useful for detecting
faces in images, a common problem in computer vision. We present two different
experiments to test the normalisations: one modelling skin colour under changes of
illuminant intensity and another modelling it under changes of illuminant colour. Fi-
nally, we present a discussion and some conclusions of using invariant normalisations
for dealing with colour images under unknown acquisition conditions.

3.1 Introduction

In colour invariance approaches we do not pursue to obtain a realistic image repre-
sentation of the scene by estimating the illuminant of the image, but to obtain an
illuminant invariant representation of it. Therefore surface descriptors obtained with
these methods aim to be invariant to some features of the acquisition conditions. This
is achieved by the use of normalisation functions, which transform images to invariant
colour spaces. In this invariant spaces, general colour modelisations which operate
under different imaging conditions can be built, for instance, for colour segmentation.

We have been working in a surveillance system where we need to detect people for
extracting its appearance features. This project is explained in detail in apendix A.
In this system we deal with a context of acquiring images where the sensor is known
and with a more or less constant backgroud. The main problem in this system are
the illumination conditions, which are not controlled.

This context, which is quite common in surveillance systems, can be considered
fairly controlled. The main drawback is the uncontrolled lighting conditions. We
propose a hypothesis to solve this problem for this conditions:

27
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Hypothesis 1 For acquisition conditions with a constant background and where the
sensor is known, we will refer to them as semi-controlled conditions, the use of in-
variant normalisations can be enough for a colour segmentation task, such as skin
detection and possibly for a general colour naming task.

Next, we present the main invariant normalisations and also a skin colour detec-
tion experiment to prove the proposed hypothesis.

3.2 Colour invariant normalisations

There is a wide literature in invariant normalisations that cancel some features of the
acquisition conditions of an image. Next, we present the most common invariance
methods, along with the type of invariance do they aim. The model of illuminant
change assumed by most of the invariant normalisations is given by:

(R G B)il1 = s

⎛
⎝ α 0 0

0 β 0
0 0 γ

⎞
⎠

⎛
⎝ R

G
B

⎞
⎠

il2

(3.1)

where s is the intensity component and αβγ the colour component of the illuminant
change. This model will be used to explain the invariance proposed.

3.2.1 Chromaticity coordinates

The first normalisation that has long been used is chromaticity coordinates. This nor-
malisation removes the dependency from the intensity of the illuminant and geometry
of objects in colour images. This normalisation is quite often considered, and is used in
many different problems as a space to build colour modelisations, e.g. skin colour [82].

Given that a change in the intensity of the light reflected by objects (either by
changing of the illuminant or by geometry of the objects) increase or decrease equally
the values for the different channels of an image, we can remove the intensity illumi-
nant dependency by dividing pixel values at each channel by the sum of the values of
all the channels for the given pixel. This is how chromaticity coordinates are defined,

nr =
R

R + G + B
ng =

G

R + G + B
nb =

B

R + G + B
(3.2)
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If we consider the model of illuminant change in eq. 3.1, we see that for the red
channel this normalisation cancels the intensity component:

nr =
sR

sR + sG + sB
=

sR

s(R + G + B)
=

R

R + G + B
(3.3)

And so on for the green and blue channels.

As we can see, nr + ng + nb = 1, which means that the normalised values remain
in a plane. In this way, we only need to work with the two first coordinates, since the
third coordinate is redundant and can be obtained from the two given. Usually nr
and ng are the coordinates selected, and nb is obviated. As said before, chromaticity
coordinates values remain in a plane, which is obtained by the intersection of the rgb
space with the r + g + b = 1 plane, and also it is possible to transform nr, ng and nb
values to the 2D space defined by this plane. This space is named (in [11]): uv colour
space. Equation 3.4 defines the transformation to this space,

u =
1 + nr − nb√

2
v =

√
6nb

2
(3.4)

This transform gives place to a normalised chromaticity diagram (figure 3.1) in a
uv space that has been used in [11] for a colour naming task.

In figure 3.2 we show the result of this normalisation for five images of the same
scene under five different illuminants. The mean of the distance between the nor-
malised images is 0.6984 and the standard deviation 0.5174.

3.2.2 Comprehensive colour normalisation

Finlayson in [33] proposes a comprehensive colour normalisation to avoid the depen-
dency due to changes of the geometry of the illumination or to changes in its colour.
Since with chromaticity coordinates we only removed the illuminant intensity depen-
dence, he proposes a grey-world normalisation step that can be performed together
and iteratively with chromaticity coordinates normalisation to avoid dependency on
the illumination geometry and colour.

Therefore, a function which normalises each pixel of the image invariant to inten-
sity, chromaticity coordinates, is defined. Let I be the pixels of an image with N
pixels and k channels. The normalisation function, R(), can be defined as,
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Figure 3.1: Chromaticity diagram obtained by the transformation of the chromatic-
ity coordinates to a 2D space.

Figure 3.2: The intensity normalisation for five images of the same scene under
five different illuminants, where the sensor is calibrated for the illuminant of the first
image.
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R(Ii,j) =
Ii,j∑k

c=1 Ii,c

(3.5)

where i = 1, .., N and j = 1, .., k. This function is the general expression for
chromaticity coordinates. To avoid the dependence on the illuminant colour, another
normalisation can be applied, a grey-world normalisation that deals with channel in-
formation, which is where illuminant colour information lies. Another normalisation
function, C(), can be defined as,

C(Ii,j) =
NIi,j∑N
n=1 In,j

(3.6)

This C() function normalises each channel of I. If we consider the model of illu-
minant change in eq. 3.1, we see that for the red channel this normalisation cancels
the colour component:

C(Ii,1) =
αNIi,1∑N
n=1 αIn,1

=
αNIi,1

α
∑N

n=1 In,1

=
NIi,1∑N
n=1 In,1

(3.7)

And so on for the green and blue channels. Thus, the dependence from the illumi-
nant colour is avoided. The comprehensive colour image normalisation proposed by
Finlayson makes the two normalisations through an iterative process that converges
and has unique solution [33]. The procedure of the algorithm is the following:

1. I0 = I Initialisation
2. Ii+1 = C(R(Ii)) Iteration step
3. Ii+1 = Ii Termination condition

This algorithm successively performs intensity and colour illuminant normalisa-
tions until the image converges. In this way, we obtain image descriptors invariant to
intensity and colour of the illuminant. In figure 3.3 we show the result of this normal-
isation for five images of the same scene under five different illuminants. The mean
of the distance between the normalised images is 0.3477 and the standard deviation
0.2984.

3.2.3 Comprehensive colour normalisation without foreground

Comprehensive colour normalisation considers all the pixels in the image to perform
the channel normalisation. In specific cases, in situations where we have an object
in front of a camera on a fixed background, we can think of a channel normalisation
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Figure 3.3: The comprehensive normalisation for five images of the same scene
under five different illuminants, where the sensor is calibrated for the illuminant of
the first image.

which only takes into account background pixels of the image. Vanrell in [97] proposes
an adaptation of Finlayson’s comprehensive normalisation in order to use information
of the background about the illuminant colour on the scene.

In many computer vision applications, there is an object in the foreground of a
scene with uncontrolled lighting conditions and the background is constant, which
means that we might be able to subtract the background from the image (segment
the object in the foreground). We can consider that the light reflected by the object
is affected by the colour of the background of the image, if we take into account that
the light on the scene is reflected on the background and reach the object. The object
that we have to analyse is affected by the light which directly reaches the object and
by the light that comes from the background. In figure 3.4 we show an image of the
surveillance system we have worked on, where we can perform a background subtrac-
tion process. We are interested in analysing the colours of the clothes of the person
that enters a building. Since the background is always the same, we can segment the
person from the background, and therefore use only background pixels for a channel
normalisation.

Figure 3.4: Example of an application where we can segment an object (person)
in the foreground of a scene, since the background is always the same. Therefore
only the pixels in the background might be considered in the channel normalisation
process.
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Suposing that we can segment the object in the foreground of the image, this
modification proposes to use only the background of the scene in the channel nor-
malisation step, and hence remove the influence of the background colour from the
colour perceived from the object. Therefore, the algorithm proposed by Finlayson is
only modified in the channel normalisation step in the following way,

C(Ii,j) =
NbIi,j∑Nb

n=1 In,j

(3.8)

where Nb is the number of pixels in the background and n iterates only on the
pixels in the background. In figure 3.5 we show the result of this normalisation for five
images of the same scene under five different illuminants. The mean of the distance
between the normalised images is 0.3611 and the standard deviation 0.2916.

Figure 3.5: The comprehensive normalisation without foreground for five images of
the same scene under five different illuminants, where the sensor is calibrated for the
illuminant of the first image.

3.2.4 Non-iterative comprehensive colour normalisation

Finlayson has proposed a variation of his comprehensive colour image normalisation
[35], which performs the same invariant normalisation previously presented but in a
single step. He avoids the iterations on the previous algorithm, which in some cases
and for some images it was long to converge and could take quite computation time.

He proposes to work in the log-space and therefore turn geometry and light colour
dependency, which is assumed as multiplicative, into additive processes. In log colour
space two simple projection operators lead to invariance to geometry and light colour.
And since these projection operators are idempotent, illuminant invariance is achieved
in a single step.

In RGB space, when the lighting conditions change the effect on a pixel is mul-
tiplicative. Comprehensive normalisation removes multiplicative dependencies using
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division. In this way, in log RGB space the multiplication is turned into addition. If
the image is processed in its matrix representation, a projection matrix can be defined
to perform a projection to a subspace which is orthogonal complement of the space
spanned by lighting geometry change. Another projection matrix can be defined to
project to a subspace which is orthogonal complement of the space spanned by light
colour change. These two projection matrices represent a subtraction of the mean
of the log rgb to each log r, g and b values, and a subtraction of the mean channel
for each component in that channel. With this two subtractions the dependency on
lighting geometry and colour is removed. Therefore, the normalisation is defined,

L(Ii,j) = log(Ii,j) −
∑c

n=1 log(Ii,n)
c

−
∑N

m=1 log(Im,j)
N

(3.9)

where N is the number of pixels of the image and c is the number of channels.

The projection matrices have been proven to be idempotent [35], and therefore
the same result is obtained if we perform more than a single projection. Let I be
the matrix representation for an image, and Pr and Pc the projection matrices corre-
sponding to these normalisations. The iterative normalisation would remain as,

Inorm = Pc . . . PcIPr . . . Pr (3.10)

Since the projection matrices are idempotent, PrPr = Pr and PcPc = Pc. There-
fore, just one multiplication with each of the matrices is enough to perform the nor-
malisation. Thus, the normalisation process remains as,

Inorm = PcIPr (3.11)

The matrix formulation of the normalisation is used to prove that no iteration is
needed, due to the idempotency properties of these matrices. However, the normali-
sation is performed by just a subtraction of mean pixel and mean channel in the log
space. In figure 3.6 we show the result of this normalisation for five images of the
same scene under five different illuminants. The mean of the distance between the
normalised images is 4.7270 and the standard deviation 5.1475.

In table 3.1, we show a summary of the distance mean and distance standard
deviation for the normalisations studied until now.
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Figure 3.6: The non-iterative comprehensive normalisation for five images of the
same scene under five different illuminants, where the sensor is calibrated for the
illuminant of the first image.

Normalisation Distance mean Distance standard deviation
CC 0.6984 0.5174
CCN 0.3477 0.2984
CCNWF 0.3611 0.2916
NICCN 4.7270 5.1475

Table 3.1: Distance mean and standard deviation for the five macbeth images using
CC, CCN,CCNWF and NICCN normalisations.

3.2.5 l1l2l3 normalisation

Gevers in [48] proposes two interesting colour normalisations invariant to different il-
luminant features. The first, l1l2l3, delivers image descriptors in a three dimensional
circular space which is invariant to highlights,

l1 =
(R − G)2

(R − G)2 + (R − B)2 + (G − B)2

l2 =
(R − B)2

(R − G)2 + (R − B)2 + (G − B)2

l3 =
(G − B)2

(R − G)2 + (R − B)2 + (G − B)2
(3.12)

The subtraction of two components of the same pixel removes the specular factor
in the dichromatic reflection model, since the specular factor is the same for the two
of them, as it is shown in [48]. Thus, image descriptors obtained are dependent on
sensors and surface albedo only.

In figure 3.7 we show the normalisation for an image with specular reflections. We
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Figure 3.7: The l1l2l3 normalisation for an image with highlights.

can see that most of the specular reflections are avoided, such as the one in the yellow
cup, and the others are minimised. We do not show the result of this normalisation
for the five macbeth images previously presented, since this normalisation is mainly
designed to remove highlights, which are not present in these images.

3.2.6 m1m2m3 normalisation

In [48] there is a second interesting normalisation proposed, m1m2m3. This normali-
sation involves two neighbouring pixels and assumes that the colour of the illuminant
is locally constant. Equation 3.13 defines the normalisation,

m1 =
(Rx1Gx2)
(Rx2Gx1)

m2 =
(Rx1Bx2)
(Rx2Bx1)

m3 =
(Gx1Bx2)
(Gx2Bx1)

(3.13)

where x1 and x2 refer to two adjacent pixels. If we consider the model of illu-
minant change in eq. 3.1, and assume a single illuminant over all the scene, we see
that for the m1 component this normalisation cancels the colour component of the
illuminant change:

m1 =
(αRx1βGx2)
(αRx2βGx1)

=
(Rx1Gx2)
(Rx2Gx1)

(3.14)
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And so on for the m2 and m3 components. Also, image descriptors obtained are
invariant to interreflections, as it is shown in [48].

We do not show the result of this normalisation for the five macbeth images previ-
ously presented, since this normalisation is not designed to work with images of ’flat’
scenes. It is designed to deliver invariance for varying geometry scenes and detect
colour descriptors in edges, since for constant flat patches the normalisation cancels
itself when processing neighbouring pixels.

3.3 Experiments for skin colour detection using in-
variant normalisations

To test the performance of some of these normalisations we have considered a typical
problem in computer vision: skin segmentation in images with varying illumination.
In the experiments that we have performed, different skin colour models have been
computed in the different colour spaces given by the invariant normalisations. In this
way, their invariance properties are evaluated for colour modelling. This is a different
approach to test invariant normalisations, which normally have been tested for image
indexing [48]. There are many previous works that have considered normalised colour
spaces to model and detect skin colour [102, 101, 50, 21, 89, 91, 90, 78, 79, 77, 67, 68,
83, 84, 85, 82, 87].

In [102, 101], Yang and Waibel propose a real-time face tracker and they use rg-
colour space, obtained using chromaticity coordinates normalisation, to characterise
skin colour distribution using a multivariate normal distribution. In [50], Greenspan
proposes face colour modelling and segmentation based on skin colour. In a similar
way to Yang and Waibel, he builds a statistical model in rg-colour space, but in this
case uses a mixture of gaussians to model skin colour. Cho in [21] proposes a plain
colour model in HSV space with dynamic adaptiveness. The model uses just some
thresholds in this 3D colour space to model skin colour and automatically adapts
adjusting these thresholds values. In [89, 91, 90], test different colour spaces for
skin colour modelling using single and mixture of gaussian models. He concludes
that a single gaussian in rg-colour space is the most efficient option for skin colour
segmentation. In [78, 79, 77, 67, 68], Soriano and Martinkauppi use histograms to
model skin colour again in rg-colour space. Störring in [83, 84, 85, 82, 87] proposes
a physics-based approach to model skin colour in rg-colour space, again, and first
using histogram models and then a single gaussian model. We have presented some
previous work of skin colour detection based on the preceding approaches in [95].
Recently, some works have considered infrared information to improve existing skin
colour detection methods [26, 86].

Considering these previous works it seems interesting to test other invariant nor-
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malisations to model skin colour, since chromaticity coordinates are widely used to
get a normalised colour space, but other normalisations could deliver better results.
Also, a single gaussian has been proved to be enough to model skin colour in nor-
malised colour spaces. Therefore, we have performed different experiments of skin
colour detection. These experiments have been performed in two steps: learning of
the colour model and test it. In the learning step we have computed a skin colour
gaussian model for the different normalisations, using a learning set of skin colour
samples. This means that we have fitted a multivariate normal distribution for the
skin colour samples in the different colour spaces defined by the invariant normalisa-
tions. We have not considered l1l2l3 and m1m2m3 normalisations, since their colour
spaces do not maintain the normal distribution property for skin colour and more
complex mathematical models should be used. Also, the comprehensive colour nor-
malisation without foreground has not been tested because we do not dispose of a
background subtraction process for the considered images.

For these experiments we have used the OULU face database [66]. This database
is composed of images of faces of 125 different people of different races. The images
were taken in a dark room with a gray background. Four different illuminants were
used along with the four corresponding white balancing processes. The combination
of the illuminants and white balancing processes delivered 16 different images per
person, which could be interpreted as different illuminant conditions (since images
are colour biased through these configurations). In figure 3.8 we show a sample of
the image database, where we can see the different images obtained for a single person.

3.3.1 Experiment 1

For the first experiment, we have selected a large amount of skin and non-skin coloured
regions within these images, considering the 16 different configurations, which will be
used in the learning and test steps. A set of 4000 skin and non-skin regions (2000
of each) have been used in the learning step to fit the gausian model. On the other
hand, 8000 skin and non-skin regions (4000 of each) have been used to test the fitted
model.

In the learning step, the sample set has been used to fit a multivariate normal
distribution [95], eq. 3.15, that models skin colour in the different colour spaces given
by the normalisations,

P (x|µ,Σ) = e
−1

2
(x − µ)TΣ−1(x − µ)

(3.15)

The mean, µ, and covariance matrix, Σ, values have been fitted to enclose 80%
of the skin samples. In the test step, we have used the test set of skin and non-skin
coloured regions for a classification process using the gaussian models learned previ-
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Figure 3.8: Different images obtained for a single person in the OULU face database,
along with the different illumination and white balancing process.

ously. The classification results for the test set can be seen in table 3.2.

Normalisation Success rate (%)
CC 62.93
CCN 85.32
NICCN 86.02

Table 3.2: Results obtained with the invariant normalisations: chromaticity coor-
dinates (CC), comprehensive colour normalisation (CCN) and non-iterative compre-
hensive colour normalisation (NICCN).

If we look at these results, we observe that comprehensive normalisations (both
iterative and non-iterative) perform much better than chromaticity coordinates. The
models have been learned and tested using images from the 16 different configura-
tions, which correspond to 16 illuminants with different intensity and spectra. Since
comprehensive normalisations have been proposed to this end, they cancel the de-
pendency of intensity and colour of the illuminant much better than chromaticity
coordinates (which are designed to remove just intensity of the illuminant depen-
dency) and, thus, the gaussian model fits better in their normalised colour spaces
and deliver better performance. In this experiment we have tested the performance
of invariant normalisations for skin colour modelling in images with strong changes
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of illumination and the results have been that comprehensive normalisations deliver
better colour invariance. However, we do not know if when dealing with light changes
in illumination (just intensity changes) comprehensive normalisations performs better
as well, and are the best option to choose when modelling skin colour in any illumi-
nation conditions. To this end we have performed a second experiment.

3.3.2 Experiment 2

To extend the conclusions obtained with the previous experiment, and check what
happens if we only deal with images with changes in the intensity illuminant, we have
performed a second experiment in which we have previously grouped the 16 different
configuration type of images into five groups of illuminant conditions, if they have a
similar illuminant colour. In figure 3.9 we show the different groups created according
to the simulated illuminant colour.

Figure 3.9: Five different groups for the different configurations of camera/white
balancing, according to a similarity in the simulated illuminant colours.

Therefore, we have processed each of these groups independently. A skin gausian
model has been computed for each groups using skin and non-skin samples from the
corresponding images. Thus, we obtain five different skin colour models. This situa-
tion would be possible if we had a classifier of the colour of the illuminant of the scenes
or if we dealt with a system where there are only intensity changes in the illuminant
(and we made five independent experiments, one for each group). It is interesting to
perform this experiment to see how well do the gaussians adapt in the different colour
spaces given by the normalisations, and therefore compare it to the unified processing
of the samples, seen in previous experiment. In figure 3.10 we show the skin samples



3.3. Experiments for skin colour detection using invariant normalisations 41

used in the learning step and the subsequently fitted gaussians for the three normalisa-
tions considered, along with the plot of the density skin samples for each colour space.

Figure 3.10: Fitting of the gausian models for the five different groups and using
the three normalisations.

If we look at the chromaticity coordinates modelling, we can observe that the
sample sets arrange in five distinguishable groups, according to the previously given
groups. Also, these groups are fitted properly by the gaussian models. On the other
side, the comprehensive normalisations deliver superposed gaussian models for the
five different groups. This expected result is because comprehensive normalisations
deal with the colour of the illuminant as well, and skin colour tend to be normalised
to the same sub-space. In table 3.3 we show the results for the classification for skin
and non-skin regions in the test set, combining the results from the five groups.
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Normalisation Success rate (%)
CC 95.82
CCN 88.42
NICCN 89.35

Table 3.3: Results obtained grouping by illuminant with the normalisations: CC,
CCN and NICCN.

We can observe that the performance in this second experiment has improved for
the three normalisations, which was an expected result since we have introduced some
information about the illuminant. There is a slight improvement in the comprehensive
normalisations. However, the best result are obtained with chromaticity coordinates.
This shows that, when dealing with illuminant intensity changes, chromaticity co-
ordinates remain as the best option. Comprehensive normalisations deals well with
illuminant colour changes, but not as good as chromaticity coordinates for illuminant
intensity changes.

3.3.3 Discussion

In these two experiments, we have tested the normalisations for changes in illuminant
colour and illuminant intensity changes. Many previous work has considered just
illuminant intensity changes and chromaticity coordinates. We have introduced com-
prehensive normalisations for skin colour segmentation and dealt with images with
strong changes in illuminant conditions. In figure 3.11 we show results of skin colour
segmentation for some images for the OULU face database using the models derived
in the first experiment, where there is no previous illuminant colour grouping. Table
3.2 showed that comprehensive normalisations achieved best results for these condi-
tions, and the segmentation results obtained reaffirm the numerical results. Better
skin colour detection is achieved than the segmentation obtained with the chromatic-
ity coordinates.

Finally, we have tested the normalisations for skin segmentation in images ob-
tained from the internet, where we do not know the acquisition conditions. In the
selected images, there are some skin coloured regions and we have tested how well do
the different models obtained with the normalisations segment them. Some results
are shown in figure 3.12.

In this case, chromaticity coordinates seem to achieve a better segmentation than
comprehensive normalisations. This can be due to the fact that images we usually
find in internet seem white balanced. Despite they have most probably been acquired
with different sensors, the skin colour in the images is not strongly biased. Under
these circumstances, chromaticity coordinates achieve a better skin colour segmenta-
tion than comprehensive normalisations, which deliver worse performance.
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Figure 3.11: Results of skin segmentation for images from the OULU face database.
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Figure 3.12: Results of skin segmentation for images from internet with unknown
origin.

3.4 Conclusions

In this chapter we have presented invariant colour normalisation methods and tested
the performance of some of them for the skin colour segmentation problem. We have
proved that when dealing with images strongly colour biased the best option is to use
comprehensive normalisations, since they deal quite well with changes in the colour
and intensity of the illuminant. Otherwise, dealing with images with small changes
of illumination (normally illuminant intensity) or images slightly colour biased the
best option is to use chromaticity coordinates, since comprehensive normalisations
take into account information of all the image to normalise its colours, and thus the
entire image affects the colour of a concrete region. Sometimes, this produces indesir-
able normalisation results, which under strong changes of illumination are acceptable,
but when working with colour unbiased images results are not as good as the ones
achieved with chromaticity coordinates. This effect can be seen in figure 3.13 where
we show the intensity normalisation and the comprehensive normalisations for two
images with a different colour mean.

In both images we can observe how the achromatic background is maintained
when using the chromaticity coordinates and is biased when using the comprehensive
normalisation, where the colour mean of the whole image affects the normalisation
for a single pixel. This effect is not a problem when dealing with images with strong
colour illumination changes (see table 3.2), but when this is not the case, it is better
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Figure 3.13: Intensity normalisation and comprehensive normalisation for two dif-
ferent images.
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to use chromaticity coordinates. Images from unknown origin tend to be somewhat
white balanced. In this case, we will choose chromaticity coordinates as well.

In the begining of this chapter, hypothesis 1 was proposed to use colour invariance
normalisations for colour segmentation tasks for acquisition conditions with slight
changes in illumination. We have proved that they deliver good performance under
these, more or less, calibrated conditions for skin colour segmentation, and that they
can also be considered for images with strong changes in illumination (chromaticity
coordinates and comprehensive normalisations respectively). This has demonstrated
that skin colour can be completely defined by its chromaticity component. However,
when we move to a more general image interpretation context, some problems arise.
Normally, all the invariant normalisations remove the intensity component of the im-
ages, and therefore it is difficult to perform a general colour naming task, which needs
intensity information to work out colours. For this reason, and after considering in-
variant normalisations, we have derived the following conclusion:

Conclusion: under uncalibrated conditions, if we aim to perform image interpre-
tation, and therefore a colour naming task, we will have to consider other approaches
than colour invariance.

Colour constancy methods aim to recover the illuminant of a scene, and generally
propose colour transformations without losing image information. In next chapter
we present these approaches to deal with colour in the image interpretation problem
along with some experiments to explore how might they be improved.



Chapter 4

Colour constancy in practice

To deal with general colour naming for image understanding we have discarded invari-
ant normalisation methods and get into colour constancy methods. Colour constancy
aims to recover the illuminant of a scene to properly white balance it without los-
ing information. In this chapter we review computational colour constancy methods
and propose a new method to deal with colour constancy for calibrated conditions,
through a surface matching process. With this method we obtain similar performance
to previous methods, and also we reduce the space of feasible solutions, which is good,
since we reduce uncertainty in the problem. We use this method to present an explo-
ration of colour constancy solutions in this feasible space and propose some hints to
improve the selection step of some methods. Finally, we present a discussion about
the evaluation of performance of colour constancy methods that proves that some
performance results depend on the data set used. We conclude that for uncalibrated
conditions we should avoid this evaluation and pursue some colour transformation
that could be guided by the goal of our image understanding system.

4.1 Introduction

In the previous chapter, we have discarded the use of invariant normalisations for a
general colour naming task, since they normally remove intensity information which
is needed. The alternative is to use colour constancy methods. Colour constancy
can be defined in two different contexts: perception and computer vision. In the
frame of perception, colour constancy is the perceptual mechanism of the HVS which
provides humans with colour vision which is relatively independent of the spectral
content of the illumination of a scene. In this way, colour of surfaces are perceived
invariant under changes in global illumination. A lemon for instance looks yellow to
us at noon, when the main illumination is bluish sunlight, and also at sunset, when
the main illumination is reddish. This ability helps us to identify objects and interact
with them. On the other hand, in the frame of computer vision, colour constancy is a
desirable ability of a machine vision system, and therefore a set of different techniques

47
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to recover the illumination of images have been proposed. When processing images in
a computer system, many of the same problems encountered by the HVS are present,
also colour constancy. These methods aim to obtain illuminant independent descrip-
tors of a scene, without losing information about its physical content.

There is a wide variety of computational methods, which try to achieve colour
constancy from different points of view. Land in [57] and [55] proposed the retinex
theory of colour vision, a theory of how HVS achieves colour constancy. This theory
has been origin of methods that try to white balance images [40, 31, 45, 38]. Also,
there are methods that are based on the recovery of spectral descriptors of the illu-
minant of a scene [64, 27, 28, 29, 18, 74]. The recovery of the spectral descriptors
of illuminants and surfaces is out of the scope of this work, and thus they will not
be considered. Also, we do not aim to reformulate the theory of how HVS performs
colour constancy. In this chapter, we will center on the colour constancy problem
under calibrated conditions.

Existing computational methods tend to solve the colour constancy problem by
giving a single solution. This single solution proposed aims to estimate a white point
in an image where we do not know if there is any, or to estimate the illumination
through its effect on the scene surfaces. These methods deliver a solution in the form
of a change of illumination, which pursues to obtain a white balanced image. Colour
constancy is an ill-posed problem, since there exists a set of different possible solu-
tions. Ill-posed problems must be regularised in order to reduce the set of solutions
(and in the optimal case to obtain a unique solution), that is additional assumptions
must be included to constrain the space of possible solutions [71]. To choose a single
solution from this set of different possible solutions is a whole problem by itself. We
can either introduce more information of the acquisition conditions, which is not al-
ways possible, introduce some assumptions of the scene, or both.

4.2 Colour constancy review

Next, we will see that even though some of the methods propose a feasible set of
solutions, they normally tend to choose a single one. However, when it might interest
us, they could be readapted to select a set of different solutions. To select a single
solution within the feasible solution space, existing methods introduce assumptions to
the problem in many different ways. Grey-world methods [19] assume a grey average
of the image chromaticity, which can be considered realistic when images contain a
wide enough range of colours. ’White patch’ methods assume the brightest value for
each channel as a white patch [6]. Obviously, in this case, saturated regions should not
be considered, since they do not represent reflectance properties of the surfaces, and
might bias the results. These two methods deal with uncalibrated conditions, as they
do not need to know any information related to the acquisition process. Therefore,
they can be used in any context, when other methods cannot, and they give a single
solution by introducing these strong assumptions. Gamut mapping methods [40, 31]
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introduce some assumptions to select a solution within a feasible set of solutions, such
as take the mean of the feasible set or take the solution that maximises the image
gamut, and bayesian methods [18, 38] introduce information about chromaticities
under given illuminants also to select the most probable illuminant according to the
colours which appear in the image. These two latter approaches need information
from the acquisition device, which therefore must be known, and means that they
cannot deal with images from uncalibrated conditions. Also, there are neural net
methods [45, 20], which use a multilayer Perceptron to learn the estimation of the
illuminant chromaticity considering the chromaticities in an image. Next, considering
its relevance, we will present Land’s retinex theory, and later we will get into detail
of gamut mapping and bayesian approaches.

4.2.1 Retinex

Before we present some colour constancy methods in detail, we will get into a study
of how colour constancy is achieved by the HVS, which gave place to many of the
existing methods. Land in [57, 55] proposed a general theory for colour vision where
he studied how the HVS achieves colour constancy. This theory is known as retinex,
which is formed from the words ’retina’ and ’cortex’, suggesting that both the eye
and the brain are involved in the process.

Figure 4.1: Composition with Red, Yellow and Blue 1921. Piet Mondrian. Oil on
canvas. 72.5 x 69 cm.



50 COLOUR CONSTANCY IN PRACTICE

He demonstrated this effect experimentally as follows. He created a ’mondrian’
composition consisting of numerous coloured patches (after the dutch painter, Piet
Mondrian, whose compositions are conceptually similar, figure 4.1) and showed it to a
person. The ’mondrian’ was illuminated by three white lights, one projected through a
red filter, one projected through a green filter, and one projected through a blue filter.
The person was asked to adjust the intensity of the three lights so that a particular
patch in the ’mondrian’ appeared white. This emulates chromatic adaptation proposed
by Von Kries in [98], where a three coefficient rule models colour correction (this model
has been used for most colour constancy algorithms). The intensities of red, green
and blue light reflected from this white-like patch were measured. Then, the person
was asked to identify the colour of a neighbouring patch, which appeared red. The
lights that illuminated the ’mondrian’ were adjusted so that the intensities of red,
green and blue light reflected from the red patch were the same as were measured
from the previous white patch. The person showed colour constancy since the red
patch continued to appear red, the white patch continued to appear white, and all
the remaining patches continued to have their original colours. In figure 4.2 we can
see the scheme and the different elements used in these experiments.

Figure 4.2: Scheme and different elements used in Land’s colour constancy experi-
ments.
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Following these experiments, he developed a physics-based mathematical model
for colour constancy based on the obtained results. This model was based on the use
of random paths and the analysis of the luminance ratios measured through the three
different filters of the coloured surfaces in the paths. The maximum luminance for each
filter was taken as a white reference. Several algorithms have been developed based
on this idea, even though most of them simplify the process described by Land. The
max responses at each channel are joined to deliver an estimation of the illuminating
light.

4.2.2 Gamut mapping approaches

Gamut mapping is a general assumption to deal with computational colour constancy
and it was introduced by Forsyth in [40]. These methods introduce the concept of a
canonical illuminant (and therefore a canonical color gamut) and build a feasible set
of solutions. A canonical illuminant is a reference illuminant, for which a given sensor
is normally calibrated. Assumptions are introduced to select a single solution within
this feasible set, such as taking the average solution from the set or the solution which
maximises the volume of the image gamut. Gamut mapping methods are depicted
through three single steps:

1. Computing of the canonical color gamut, for a given sensor and a canonical
illuminant, using an exhaustive set of reflectances.

2. Building the feasible set of solutions, that for a given image takes its color gamut
into the canonical gamut.

3. Selecting a single solution within this feasible set of solutions.

Forsyth introduces an important assumption widely used, which we name the
gamut mapping assumption:

Assumption 1 The space of feasible solutions can be bounded if we require that any
solution must guarantee that it takes the image gamut within the canonical gamut. In
this way we obtain the feasible set of solutions.

The canonical illuminant should be a standard illuminant which produces a bal-
anced response for a white surface using a given sensor. Hence a canonical gamut,
Γc, can be defined as the close convex set of the rgb sensor responses to all possible
surfaces under this canonical illuminant. Image gamut, Γi, is defined as the convex
set of the recorded camera responses for a given image. In figure 4.3 we show different
transformations that take the image gamut into the canonical gamut following eq. 4.1,
all these transformations form the feasible set,and in figure 4.4 we can see that the
feasible set of solutions is a convex set in the space of illuminant changes and some
heuristics need to be used to select a single solution within this set.
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Figure 4.3: To build the feasible set of solutions, we consider the illuminant changes,
αβγn, that take the image gamut within the canonical gamut.

Figure 4.4: The feasible set is a convex set in the space of illuminant changes. Any
solution within this set is, by definition, possible and some heuristics need to be used
to select a single solution.
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Forsyth in [40], following Von Kries three coefficient rule [98], proposes to use
diagonal matrices, D, as the linear transforms which represent illuminant maps, since
full 3 × 3 linear transforms introduce high computational complexity to the problem
and it is unclear that, in a 3D colour space, the full model is necessary [30]. The
feasible set of solutions is the convex set of all diagonal matrices, D which take the
image gamut within the canonical gamut:

∀ρ ∈ Γi Dρ ∈ Γc where D =

⎛
⎝ α 0 0

0 β 0
0 0 γ

⎞
⎠ (4.1)

where ρ denotes a colour of the image gamut. Once the feasible set is computed,
some heuristic must be introduced to select a single map within it: average of the
feasible set, max volume map, etc [37].

In [31], Finlayson presents a variation of Forsyth’s method that performs a gamut
mapping process in a 2D space, considering only chromaticities and removing inten-
sity information. Hence, this 2D gamut mapping process estimates the chromaticity
of unknown illuminants. Also, he introduces restrictions on the feasible illuminants,
to subsequently further constrain the set of solutions.

All these methods use information of the sensor to operate, in the process of build-
ing the canonical gamut, and they cannot be used in problems where we know nothing
of the acquisition conditions, such as images taken from the internet. It is important
to notice that the canonical gamut in these methods is computed for a given sensor.
Therefore, they are used to perform colour constancy when acquiring images with the
corresponding sensor. For this reason, they are normally used for image correction,
in problems where this information is known.

4.2.3 Bayesian approaches

There are probabilistic colour constancy methods, known as bayesian methods. Bayesian
methods, such as Brainard’s bayesian colour constancy [18] and Finlayson’s colour by
correlation [32, 38, 39], use prior knowledge of chromaticities under some illuminants
as restrictions to constrain the problem.

In the case of the colour by correlation method [38], the probabilities of chro-
maticities under a set of given illuminants are used to compute a probability for each
illuminant to be the scene illuminant. A correlation matrix is built to correlate possi-
ble image colours with each of the possible scene illuminants. This method deals with
the recovery of the chromaticity of the illuminant, therefore intensity information is
discarded and just reflectance chromaticity is considered. The chromaticity space is
partitioned into uniform regions. For each illuminant, the range of posssible image
chromaticities that can be observed under that light is characterised. This information
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is used to build a probability distribution with the likelihood of observing an image
colour under a given light: the probability distributions of each illuminant comprise
the columns of the correlation matrix. To estimate the illuminant of an image, first,
we determine which image chromaticities are present in the image by binarising a
histogram of the chromaticities of the image. This gives us a vector of ones and zeros
corresponding to whether or not a given chromaticity is present in the image. The
product of the obtained vector with the correlation matrix produces a correlation of
the vector of chromaticities in the image with the probability distribution of each
illuminant in each column. Therefore, we obtain a vector with the correlation values
for each illuminant. To find an estimate of the unknown illuminant, we can choose
the illuminant which is most correlated with the image data, i.e. the maximum in
the vector with the correlation values. In figure 4.5 we show a diagram of how the
correlation matrix is built and in figure 4.6 how it is used to estimate an unknown
illuminant by multiplying it by a binary vector containing the chromaticities present
in an image. The result of this multiplication is a vector with the probability for each
illuminant according to its chromaticities.

Figure 4.5: In the correlation matrix, information of probability distributions of
chromaticities for different illuminants is combined.

Colour by correlation can only estimate illuminants considered in the computa-
tion of the correlation matrix, which could be a restriction when considering problems
with no control of expected illuminants. Therefore a large set of assorted illuminants
should be considered.
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Figure 4.6: Information of chromaticities present in an image are combined with the
correlation matrix to obtain a vector with illuminant probabilities. The illuminant
with maximum probability is selected as the estimation of the illuminant.
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In [9], Barnard proposed a modification to the proposed colour by correlation
method to work in a three dimensional colour space, instead of working with just the
chromaticities.

Brainard’s bayesian colour constancy proposes to use prior information about the
world to estimate the most probable illuminant and reflectance for a given scene.
The basic idea is to use Bayes rule to estimate the spectra of the illuminant and
the reflectance of the surfaces given the values of an image. Determining the prior
probability of the scene parameters, spectra of the illuminant and reflectance of the
surfaces, is a crucial step in the Bayesian estimation approach, and they are derived
from standard illuminants and the Munsell chips respectively. This method deals
with the recovery of illuminant spectra and reflectance of surfaces, which is not in the
interest of this work, but it is interesting the idea of introducing prior information of
illuminants and surfaces in the scenes.

Sapiro in [74] proposed an algorithm for estimating the scene illuminant which uses
Bayes rule as well. The method is based on the probabilistic Hough transform, which
is used for a voting process, and needs the computation of a matrix that contains ex-
pected reflectance information. Hence, this method also introduces prior information
on expected surfaces.

Like gamut mapping approaches, bayesian methods need information of the sen-
sor device used in the acquisition to work, and therefore they can only be used in
problems where this information is known. Again, either the correlation matrix or
the prior information of expected surfaces are computed for a given sensor, which
constrains the images in which they can be used.

4.3 Relaxed grey-world

Considering existent colour constancy methods and after having analysed them, we
have arrived at a conclusion: either under calibrated or uncalibrated conditions, the
problem of the recovery of the illuminant of a scene is an ill-posed problem, and
therefore the number of valid feasible solutions is bounded but infinite. Only by in-
troducing more assumptions or constraints, can the space of solutions be reduced,
and in this way we can select feasible solutions to the problem.

Gamut mapping assumption, seen in section 4.2.2, has been widely used to con-
strain the space of feasible solutions. Under calibrated conditions, the canonical
gamut is the gamut of the known sensor under a white illuminant, considering the
maxim number of feasible surfaces. Under uncalibrated conditions, we will assume
that it is the colour space defined by the HVS. However, we should consider more
assumptions to further constrain the feasible set of solutions. To this end, we propose
the following hypothesis:
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Hypothesis 2 Considering that current methods for colour constancy introduce sev-
eral physical constraints to reduce the number of solutions, it is possible to introduce
high-level visual cues to complement and relax them to further constrain the problem
and improve the performance of the algorithms.

Considering existing colour constancy approaches, we will try to improve them by
the introduction of a visual cue related to colour constancy: colour matching. Colour
matching, also known as assymetrical surface matching [42], is a visual task where
the HVS pairs coloured surfaces in two different scenes under different illumination
conditions. In next chapter we will get into it with more detail.

Since colour matching has been proved to be an important visual cue for colour
constancy, we propose to introduce a colour matching process to improve computa-
tional colour constancy [94]. The surface matching process we present wants to match
every image surface with a set of canonical surfaces, i.e. surfaces seen under canonical
acquisition conditions. The initial idea was to generate all the possible combinations
of matchings. Even when using a reduced and significant set of image surfaces, what
could mean to consider only surfaces in the convex hull of the image gamut, and a
small set of canonical surfaces, the set of pairs of matches that need to be computed
was too large and also lots of non-consistent pairs of matchings were introduced: if a
reddish image surface was matched with a bluish canonical surface, it was not coherent
to match another bluish image surface with a reddish canonical surface. This con-
straint is known as relational colour constancy [43, 69, 42], i.e. the relation between
the colours remain the same despite changes in the illumination conditions (figure 4.7).

In order to introduce this high-level visual cues, we choose the existing grey-world
assumption, which is used for uncalibrated conditions methods. The grey-world as-
sumption, as depicted before in [19], supposes that the average of chromaticities of an
image is grey. Even though it is a strong assumption, it has been widely used since
it works in different situations, when considering images with a wide range of chro-
maticities. Thus, it can help us to introduce a constriction that maintains the colour
structure of the image gamut when performing the surface matching process. In order
to relax the assumption we propose another one, the relaxed grey-world assumption:

Assumption 2 The image gamut under the canonical illuminant contains grey or
its average is close to grey.

Considering this new assumption the set of canonical surfaces that can be paired
with each image surface is reduced to the canonical surfaces which are close to the
image surfaces when the grey-world map is applied to the image, figure 4.8. A subset
of canonical surfaces are selected to be matched with each image surface. Since a
perfect match is not possible, we match with the nearest canonical surfaces. In this
way, the relaxed grey-world assumption is introduced in order to find the solutions
near the grey-world, enabling some sort of flexibility near this solution.
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Figure 4.7: Relational colour constancy assures that relation between colours re-
main the same despite changes in the illuminant conditions: an illuminant change
cannot alter the relation between colours in the image.

Figure 4.8: With the relaxed grey-world assumption, we have to find a set of
nearest-neighbour canonical surfaces for each image surface, when the grey world
map is applied. The image is maped to the center of the canonical gamut (a),(b)
and the nearest-neighbour canonical surfaces for each image surface are selected as
possible pair for the matching process (c).
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The combination of the relaxed grey world asumption with the surface matching
process motivate the new approach we present here. The proposed method matches
each image surface with a subset of canonical surfaces that we have previously se-
lected. The selection criteria has been to get a subset of essential colours that are
likely to appear in the real world. One good set of colours are those presented in the
Macbeth Color Checker Chart, since are close to fulfill this criteria.

Since after the grey-world map we do not have a unique perfect match with the
canonical surfaces, we get the set of nearest neighbours to the image, i.e. the canon-
ical colours that are near a neighbourhood region in the grey world transform. The
method can be divided in two parts:

• canonical surface selection

Computing the canonical surfaces as prior knowledge in the surface matching
process, that is to select a representative set of surfaces and compute their RGB
values for the canonical illuminant, which is selected to be well balanced with
the sensor used. Hence we obtain a set of k canonical surfaces, denoted as
SC = {SC

1 , SC
2 , . . . , SC

k }.

• colour matching

For a given image, I, acquired under an unknown illuminant U, the matching
algorithm is carried out through the following steps:

1. Getting RGB values of significant surfaces from the image I, denoted as
SU (I) = {SU

1 , SU
2 , . . . , SU

n }, where n is the number of significant surfaces. Sig-
nificant surfaces are those that depict the image gamut.

2. Applying the grey world transform to SU (I), which places the center of the
image gamut in the center of the canonical gamut (figure 4.8 a,b). It is denoted
as SGW (I).

3. For each surface, i = 1 . . . n, in SGW (I) we select the m nearest neighbours
surfaces from the canonical surfaces (figure 4.8 c), SC , we denote each of this
subsets as SNN

i .

4. Computing the set of all possible matchings between each SU
i with the surfaces

in the corresponding SNN
i , we bring together the matchings for all SU

i and name
this set RCorr = {SU

1 = SNN
1,p1

, SU
2 = SNN

2,p2
, . . . , SU

n = SNN
n,pn

; ∀pi = 1, . . . , m},
where #RCorr = mn.

5. For each element of RCorr, the corresponding αβγ map (eq. 4.1) is computed,
and we obtain a set of maps, MAPRCorr

αβγ .

6. All the maps in MAPRCorr
αβγ out of the feasible set are removed, as we do not

want to deal with impossible maps.
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Once we have generated the set of maps, MAPRCorr
αβγ , the last step is to use one of

the existing heuristics to select a map within this sub-feasible set of solutions. Next
we will show the results using the heuristics of maximising image gamut volume and
selecting the average map of the set. A simplificated scheme of the process proposed
by the method can be seen in figure 4.9.

Figure 4.9: An illustration of how the relaxed grey world algorithm proceeds.

The method uses concepts introduced by gamut mapping methods, such as con-
sidering αβγ diagonal maps as illuminant changes and the restriction of a feasible set
of solutions, and also by bayesian methods by introducing prior knowledge of canoni-
cal surfaces, which are the coloured surfaces that we will expect to found in the images.

4.3.1 Experiments and Results

To evaluate the method we have looked at its performance on an experiment using
synthetic data. This is a first way to evaluate algorithms because performance is not
affected by image noise and we are able to evaluate performance over a large amount
of synthetic images and thus obtain a reliable performance statistic. Otherwise, with
real data these problems arise, and also we consider that the available datasets to
evaluate computational colour constancy are not large and assorted enough to exten-
sively test the method.
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First, we had to select the canonical acquisition conditions, that is a standard illu-
minant and a sensor calibrated for this illuminant, which therefore is white balanced.
We have chosen a synthetic planckian illuminant with CCT=6500K (fig. 4.10 (a))
and built a gaussian narrow-band sensor, with centers in 450, 540 and 610 nm (fig.
4.10 (b)). Then, we had to choose the reflectances to be used as canonical surfaces.
In our case we have selected the 1995 reflectances of the Munsell chips [23]. Taking
the canonical illuminant, we have synthesised the RGB values of these reflectances to
obtain our canonical set of surfaces.

(a) (b)

Figure 4.10: The synthetic illuminant (a) and sensor (b) used in the experiments.

Once we have built the base of prior knowledge of canonical surfaces, we have gen-
erated synthetic images to test the method: 400 images consisting of 10 reflectances
per image (from Munsell chips randomly selected) under a random illuminant, chosen
from a widely used selection of 11 different illuminants [6]. As remainder parameters
of the method, we have selected 6 significant surfaces from each image (considering
the 6 most representative surfaces from the convex hull of its gamut) and taken their
5 nearest neighbours surfaces from the canonical surfaces for the grey world transfor-
mation, that is n = 6 and m = 5.

To measure the performance of the method, we have used as recovery error the

angular error between the RGB of the estimated illuminant, ̂RGB
C

w , and the RGB
of the canonical illuminant used, RGBC

w . This evaluation of computational colour
constancy methods has been widely used previously, and it is explained in [6]. The
RGB values of the illuminants are usually unknown in real images, but they can be
computed easily working with synthetic data.

recovery error = angle(̂RGB
C

w , RGBC
w )
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Heuristic CRULE Relaxed Grey-World
Maximum Volume map 7.09o 7.55o

Average map 9.35o 6.62o

Table 4.1: Comparison of the performance of the two methods. The value shown is
the root mean square of the angular errors computed for the 400 synthetic images.

In table 4.1 we show the performance of the proposed method and compare it with
Forsyth’s CRULE [40], since it is considered a powerful colour constancy method that
usually achieves best results [6]. We have considered two heuristics to select the opti-
mal map within the feasible set of solutions generated in each case: maximum volume
map and average map. The heuristic of the maximum volume map is often used,
since it takes the map within the feasible set that delivers the most colourful solution
and it delivers good, in some cases best, performance. The results obtained vary
depending on the heuristic used. In the table, we can see that the best performance is
achieved with the proposed relaxed grey world method, taking the average map of the
computed maps. Therefore, our method implies a slight improvement of the colour
constancy achieved by CRULE, which reinforces the use of the assumptions proposed.

However, we are interested in the type of solutions generated with our method.
In addition, we show in figure 4.11 a comparison of the different sets of maps gener-
ated with the two algorithms considered, they are plotted acording to their recovery
angular error (x-axis) and the volume of the image gamut generated (y-axis). Yellow
dots are the solutions generated with the relaxed grey world approach and blue dots
are the feasible set of solutions generated with CRULE. We can observe that com-
paring with CRULE, with our method we avoid to generate a large set of maps, and
also to include maps with an important recovery error. We look for a reduced set of
maps which usually includes the best solutions. In this sense we have computed the
average value of the best angular error produced by the generated solutions for each
of the 400 images and it has resulted to be 1.9o, which means that an optimal map
is included in our subset of feasible maps in most cases. Both results, improving of
the recovery angular error and reduction of the feasible set of maps generated, are
important results that justify the proposed method.

Summarising, we have presented the relaxed grey-world method, with a similar
performance to CRULE, which improves the original grey-world method and computes
a reduced feasible set, and that delivers an acceptable error. This proves hypothesis
2 presented at the beginning of section 4.3.

4.3.2 Discussion

It has been proven that the introduction of the relaxed grey world approach to solve
computational colour constancy opens a new line of research in this problem, that can
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Figure 4.11: Comparison of the sets of maps generated with CRULE (blue dots)
versus the set of maps generated with our method (yellow dots) for 6 different images.
In the x-axis it is represented the recovery angular error and in the y-axis the volume
of the image gamut generated.
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help in reducing the recovery error of current methods, which ignore image information
that can be introduced by surface matching. The selection of the canonical surfaces
is an important step to pay more attention and to be focus of a deep study, but it is
proposed in the future research lines of this work. Indeed, the selection of canonical
surfaces used in our experiments has been roughly done, but it is just a first approach
to introduce the colour matching cue, and it has delivered promising results. We think
that further work needs to be done in the selection of the set of canonical surfaces,
as they should represent more trustworthily the knowledge of more likely colours.

4.4 Performance on computational colour constancy

In [93] we have presented an exploration of the space of solutions, using the reduced
feasible set obtained with the method proposed. To improve the existing heuristics in
the selection step, we have explored different measures, existing and new ones, such
as volume map, distance to the grey world solution, etc. and the experiments lead
us to conclude that other criteria, such as a combination of the explored measures,
could be defined in order to better approximate the optimal solutions. However, it
is a complex problem wich would require a much deeper study. In this section we
analyse the existing performance of colour constancy methods, to see whether it is
interesting to consider it in an uncalibrated frame.

Many computational colour constancy methods have been proposed in the litera-
ture, along with an evaluation of their performance. Most of the existing evaluations
looked at how acurately the illuminant of the scene is recovered or how well it can
be converted to a reference illuminant, which is normally calibrated. Normally, the
methods proposed are first evaluated with synthetic data [6], which is noise free and
experiments can be performed exhaustively through a large amount of data, and af-
ter they are tested with real image data [7], which normally is an assorted but not
exhaustive set of images of scenes acquired under different illuminants. Recently,
Hordley et al. in [53] have proposed some interesting modifications for evaluating
colour constancy to present more reliable results, using the median rather than the
most common used root mean square (RMS) of the angular error and, also, using the
Wilcoxon sign test [52] to compare the performance of the methods.

At this point, we arrived to a conclusion: evaluation of colour constancy methods
has been based on measuring whether the proposed assumption agreed with the actual
solution the image was acquired. In practice, images do not fulfill a concrete criterium,
and it is usual to deal with images that do not 100% fulfill the assumptions:

• Scenes with a non average grey chromaticity.

• White do not correspond to maximum intensity.

• The scene does not present a maximum diversity of colour.

• Etc.
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The evaluation method usually used depends on the data set used. When most
of the images in the data set fulfill the assumption introduced by the method, the
method works and delivers good performance, otherwise not. If we want to evaluate
a colour constancy method, it is important to consider this dependency of the data
set. To answer this question we have proposed the following hypothesis:

Hypothesis 3 The performance of colour constancy methods is determined by the
number and chromaticity distribution of illuminants in the data sets, and also by the
type of images or reflectances considered.

In experiments with synthetic data, normally are used the reflectances of the
Munsell chips, a set of measured spectra of illuminants (as in [6]) and some sensor
calibrated for one of these illuminants, which will be considered as the canonical. If
we want to perform colour constancy experiments with real image data, there only
exist two widely used image data sets [46, 8] that come along with information of the
acquisition conditions, such as spectra of the illuminants and sensibility curves of the
sensor used, that helps in the evaluation process of the methods. The construction of
these image data sets is rather laborious and complex, and normally it must be focused
to evaluate some concrete type of performance. For this reason, we think it is dif-
ficult to find exhaustive enough real image data sets to test colour constancy methods.

If we focus on the evaluation for synthetic data, images are composed of a set or
RGB values, which represent the surfaces in the image. The RGB values are built
from a randomly selected set of reflectances and also a random illuminant is selected
from the available data. In many previous works it has been shown that, the more
surfaces are in the image the lower is the error. Then, to test a method, we measure
how well the chromaticity of the selected illuminant is estimated. To this end, we have
analysed the illuminant sets proposed in [6], since an extensive comparison of colour
constancy methods can be found in it, and its data has been widely used in other
experiments. We thought that performance measures of the methods tested might de-
pend also on the number and chromaticity distribution of illuminants in the data sets.

In figure 4.12, we show the xy chromaticity coordinates of the first set of illumi-
nants proposed, consisting of 11 different real illuminants. We can observe that they
do not enclose a large amount of different chromaticities, and they are mostly limited
to the planckian locus chromaticity region.

In figure 4.13, we show the xy chromaticity coordinates for the two other sets of
illuminants in the Simon Fraser data set. This other illuminants have been obtained
by linear combination of the 11 initial illuminants. In the figure we can see that since
these two sets have been obtained by linear combination of the previous ones, the
chromaticity region enclosed by them is roughly the same as by the initial set.

In favour of these illuminant sets, we have to say that even though they do not
represent all the range of chromaticities, and are just enclosed to a small chromatic-
ity region, this chromaticity region, the planckian locus, is where most natural and
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Figure 4.12: xy chromaticities of the set of 11 illuminants of the Simon Fraser data
set.

(a) (b)

Figure 4.13: xy chromaticities of the set of 87 illuminants (a) and the set of 287
illuminants (b) of the Simon Fraser data set.



4.4. Performance on computational colour constancy 67

Synthetic illuminant set Chromaticity area enclosed Recovery angular error
1 0.0001 7.9294
2 0.0341 10.7785
3 0.0729 11.7745
4 0.1111 12.3573
5 0.1508 17.1378
6 0.1858 17.2140
7 0.2176 16.2176

Table 4.2: Results of the recovery angular error (RMS over 1000 images in each set)
for the different illuminant sets proposed using CRULE.

artificial illuminants lay. However we might be interested on the performance of the
methods in extreme illuminant conditions, i.e. when a colour filter is placed in front
of the illuminant, and unknown illuminants can have any chromaticity. In this case,
we think that the performance of the methods will be limited by the area of the chro-
maticity region enclosed by the illuminants used.

To this end we have performed an experiment with synthetic data to see if the
chromaticity range of the illuminants considered has some effect on the performance
of the colour constancy methods. We have just used Forsyth’s CRULE method for the
experiment, since we want to focus on the evolution of a single method performance
and CRULE has been extensively tested and proven to be a robust method. Then we
have created different synthetic illuminants in the range of all the possible chromatic-
ities and have arranged different sets which enclosed increasing chromaticity area. In
figure 4.14 we show the chromaticity area enclosed by the 7 different illuminant sets
generated.

Then we have generated 1000 synthetic images consisting of 8 surfaces for each
of the 7 illuminant sets and measured the RMS of the recovery angular error using
CRULE. In table 4.2 the results of the angular error along with the chromaticity area
covered by the illuminants are presented.

We can observe that the angular error increases when the range of illuminants,
and its chromaticity range, is increased. Hence, considering the dependence of eval-
uation measures on the data used in the experiments, we have derived the following
conclusion:

Conclusion: The solutions within the feasible set are equally good, unless we
introduce high-level information. Therefore, the performance of existing selection
methods has been determined by the image contents and the chromaticity of the il-
luminants.

The measure of the recovery angular error of estimated unknown illuminants is
a proper way to test colour constancy when we aim to achieve perfect colour con-
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.14: Chromaticity area enclosed by the 7 different synthetic illuminant sets
created for the experiment (a-g).
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stancy and it is useful to evaluate methods that are designed to be used in camera
calibration, since it delivers a measure of how well colours are white balanced in an
image. However, this goal might not be that important in computer vision, which is
the interest of our work. In computer vision we do not always, not to say rarely, know
the sensor information of the acquisition devices used, information which is needed
in most colour constancy methods, what clearly indicates that they are aimed to deal
with camera calibration. We might deal with a computer vision system with a cam-
era, whose sensitivity curves are not known and no calibration process is possible, or
deal with images from unknown origin, such as internet images, and we would like to
perform a colour constancy process to balance the colours in an image, when possible,
for a post-processing of image understanding. In image understanding, we think that
it might be more interesting to obtain useful solutions for this post-processing, rather
than to achieve a perfect white balanced image.

The experiment performed proves hypothesis 4: if we alter the illuminant sets
used in the experiment, the performance of the methods changes. This dependency
from the test data set demonstrates that, under uncalibrated conditions, it is nor
reliable nor useful to work with unique optimal solutions. With this goal in mind,
in next chapter we present a method for white point estimation under uncalibrated
conditions, focused on delivering practical solutions, with a colour interpretation of
the surfaces in the image, according to the problem we are dealing with.
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Chapter 5

Semantic white point estimation

In the frame of computer vision under uncalibrated conditions, we present a white
point estimation method which proposes multiple solutions that can deliver differ-
ent coherent interpretations of the scene. In this chapter we explore furhter colour
matching as a visual cue to solve white point estimation. Firstly, we present the
necessity of considering multiple white point estimations within the context of image
understanding. Then we propose a semantic matrix to introduce previous knowledge
about the scene content. This previous knowledge will be used in a process of colour
matching to perform a voting within the set of feasible solutions. A cross-correlation
is computed to generate a weighted feasible set, which will be used to select inter-
pretable solutions. Finally, we present some results considering local maxima in this
feasible set and the computing of ridges to compact the weighted feasible set losing
minimum information.

5.1 Introduction

Following the two contexts for image annotation proposed in section 1.3, calibrated
and uncalibrated conditions, we differentiate colour constancy methods in two groups
regarding the context in which they can work. Therefore, we separate methods in two
groups, those which need information of the acquisition system and those which do
not require any previous knowledge of the imaging process. We place gamut mapping
and bayesian methods in the first group, since sensor information is needed to build
the canonical gamut or the correlation matrix used in the process, whereas maxRGB
and grey world methods are in the second group. Thus, we name methods in the first
group calibrated methods, regarding the necessity of information which is normally
used for calibration, and methods in the second group uncalibrated methods.

In last chapter, we concluded that performance on colour constancy methods must
be carefully taken into account. Also, we arrived at a more interesting conclusion:
under uncalibrated conditions and when we aim to interpret an image, it is not prac-

71
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tical to look for a unique optimal solution, but for different interpretable solutions. In
this way, high level information needs to be introduced to find these white point esti-
mations related to a colour interpretation of the images. This high level information
could be introduced in the form of assumptions of the scene content. Foster in [42]
shows that colour constancy is aided by visual cues, such as colour matching. Also
colour naming [10], a particular case of colour matching which involves higher level
information, helps in colour constancy. Therefore, we propose the next hypothesis to
estimate the white point of an image:

Hypothesis 4 In a frame of uncalibrated conditions, it is possible to obtain coherent
interpretations of the illumination of an image by introducing assumptions of the
scene content.

This information about the context of the scene can be introduced in many differ-
ent ways. We propose to use a colour matching process considering coloured surfaces
with a name. Hence, we introduce an assumption, nameability assumption, to guide
the process:

Assumption 3 The adequacy of the white point estimation of an image is based on
the assignment of a number of known names to the surfaces within it.

We propose a method which considers gamut mapping and bayesian methods,
and readapt them to a frame of uncalibrated conditions. Since for uncalibrated con-
ditions, colour constancy is less constrained than for calibrated conditions, there is
more freedom regarding the unknown sensor, we have considered to introduce more
assumptions to the problem to reduce the space of possible solutions.

In this way, we present an approach to deal with uncalibrated white point estima-
tion using colour matching, which psychophysics relate to colour constancy [42], as a
way to introduce assumptions and to constrain the problem. We are not interested in
looking for a single solution, but to give different possible interpretations regarding
the coloured surfaces that we expect to find in images, trying to perform a similar
process to HVS during colour matching. The degree of colour matching of the differ-
ent possible solutions is measured through a correlation process, in a similar way to
the voting process proposed in [74].

Existing colour constancy methods try to estimate the illuminant of a scene, E(λ)
from equation 2.3, and in our framework we propose to estimate a white point, consid-
ering that we do not know the acquisition conditions, which comprise both illuminant
and sensor information, Ak(λ) from equation 2.6. In figure 5.1 we show a problem
that can be found in computer vision, in the frame of image understanding. The
question ’what is the colour of an object in an image?’ might have different answers if
we consider the colour constancy problem, and different configurations might be valid.

In the figure 5.1 we can observe a synthetic image of two apples. We do not know
the acquisition conditions of the image, and hence, there can be different interpreta-
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Figure 5.1: Problem in computer vision: ’what is the color of the apples?’
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tions of the scene. We show three different possibilities, but there could be more. In
the first interpretation we suppose a bluish illuminant and thus the apples would be
green. In the second interpretation it is supposed a greenish illuminant and the ap-
ples would be red. Finally, in the third interpretation we suppose a reddish illuminant
with yellow apples. These three interpretations are valid for us when we look at the
images, since we know that there exist apples of these colours. More interpretations
could be considered, which might give unrealistic colours of apples (such as purple,
blue, etc). In any case, interpretations delivered must maintain the relation between
colours to be feasible, which is a restriction introduced by relational colour constancy,
i.e. relation between colours remain the same despite changes in illumination [42].

With this approach, we do not aim to achieve perfect colour constancy, since
there exist more than one solution equally feasible. Nevertheless, under uncalibrated
conditions we think that the colour constancy problem should be considered and we
propose a method to interpret the acquisition conditions of a scene under this con-
ditions, using a procedure in the frame of gamut mapping methods and introducing
some ideas of the bayesian approaches to restrict the problem. We propose to per-
form a colour matching process, which introduces restrictions on the surfaces in the
scene, in order to further constrain the problem. We will not consider just a sin-
gle solution, or interpretation, but a set of different likely estimations of the white
point, which agree with the surfaces that we expect to find in the scene. Also, more
restrictions could be introduced and combined in the method , such as illuminant re-
strictions, to further constrain the problem, but they are out of the scope of this work.

5.2 Colour matching for image interpretation

HVS performs colour constancy with the help of several visual cues [80, 44, 42].
We propose to introduce one of these visual cues in the method we present: colour
matching. The colour matching process consists of matching pairs of surfaces under
different illuminants, which are perceived as the same surface. The problem is usually
presented in the way that we have to pair a set of surfaces under an illuminant with a
set of surfaces under another illuminant (figure 5.2). Other variations of the surface
matching problem have been proposed [3, 17]. In this visual process we seek to ig-
nore the effect of the illuminant and match the surfaces according to their reflectance
properties. Colour matchings are constrained by relational colour constancy, which
assures that the relations between the colours are maintained within the matchings.
The performance of HVS in colour constancy for the surface matching problem has
been evaluated in [42, 3, 17]. Colour matching has been previously considered for
dealing with varying illumination in [14] for an object recognition problem.

To perform a colour matching process in our method, we have to deal with com-
putational data. In this way, we will use colour surface descriptors instead of the
physical coloured surfaces used in psychophysical experiments. We propose to define
a set of coloured surface descriptors, and restrict the possible solutions so that we have
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Figure 5.2: In the colour matching problem, we have to pair surfaces of the same
scene that are perceived as the same colour under different illuminants, in the example
a red and a blue light.

as many surface descriptors as possible of the image within this set. We will consider
those white point estimates as likely candidates which give a high degree of colour
matching. We will perform a colour matching process between the coloured surfaces
in an image and the set that we have defined. Hence, images with coloured surfaces
which are not actually within our set of coloured surfaces might not be solved properly.

The method we propose can be adapted to work with different colour sets, depend-
ing on the type of images we are dealing with, and it is a way to impose restrictions on
what we expect to find in the image. Therefore the method is in the paradigm of pur-
posive vision [1], where the process is task-oriented and where, to solve the problem,
information about what do we want to solve is added. In our case, we introduce as-
sumptions on the coloured surfaces that we expect to find in scenes we want to analyse.

In this work, we will consider, as previous knowledge, surfaces of synthetic colours
(red, green, blue, etc.) and deal with images with these types of coloured surfaces.
Other colour sets, depending on the scenes that we want to deal with, might be used
to work with other sort of images, e.g. natural colors, where we could have ’leave’
colour, ’sky’ colour, ’stone’ colour, etc.

5.3 The semantic colour matrix

To introduce the set of colours for the colour matching in the method we use a se-
mantic colour matrix. To include the colour information in this matrix we will only
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consider values of colours with an unambiguous name or meaning, i.e. coloured sur-
faces which have probability 1 to belong to a colour category and probability 0 to
belong to the rest of the colours.

To build the semantic colour matrix, denoted as SM , we need a set of colour
focals, which are the unambiguous colour descriptors defined before. Then, we need
to define the canonical acquisition conditions, i.e. the conditions within which we
want to match the surfaces and the conditions that we want to colour correct our
images to. If we want to consider a general frame for colour understanding, we should
take as canonical acquisition conditions a standard illuminant is, e.g. daylight, and
a standard observer sensor os, e.g. the colour matching functions. The sensor must
be calibrated for the corresponding illuminant. Thus, the canonical acquisition con-
ditions Ac

k(λ), following eq. 2.5, can be defined as

Ac
k(λ) = Eis(λ)Ros

k (λ) (5.1)

Also we can define Γc as the canonical colour gamut for these acquisition condi-
tions. Let Scn

i (λ) be a set of n reflectances that correspond to colour focal surfaces,
i = 1..n. We define sensor responses of these focal surfaces under canonical acquisi-
tion conditions as

ρcn
k,i =

∫
Scn

k,i(λ)Ac
k(λ)dλ (5.2)

Now we can define the semantic surface matrix, SM , which stores the points of
Γc that belongs to a semantic category with probability 1.

SM(�c) =
{

1 if �c ∃ in ρcn

0 elsewhere (5.3)

where �c is a colour vector, �c ∈ Γc. SM is a k−dimensional matrix, where k
is the dimension of the colour space (i.e. the number of sensors of the acquisition
device), which is usually 3 in colour images. For k = 3, a normal dimension of Γc is
255×255×255, and SM has the same dimension as Γc. SM introduces the restrictions
of expected colour in images. Thus, we can build different SM matrices according
to the types of images we have to deal with. In figure 5.3, we show some possible
matrices that could be constructed for synthetic images, natural images, and so on,
depending on the categories we want to use. In the following section we explain how
to use this matrix SM to give different interpretations of the white point of a scene.
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Figure 5.3: Possible SM matrices target oriented: depending on the types of images
we have to deal with we have to construct the corresponding SM matrix.

5.4 A Weighted Feasible Set

The SM matrix is used to perform a colour matching process to find different white
point interpretations for a given image. The idea of the method is to build a weighted
feasible set of solutions, correlating SM with the gamut of an image, which must be
transformed to estimate each possible white point. We will not only consider the ac-
quisition conditions corrections that take the image gamut inside the canonical gamut,
but inside the rgb cube, since it will reduce the complexity of the problem. Though
in this way the problem is less constrained, we restrict it subsequently when matching
only with the colour focals represented in our matrix. The weight of each map indi-
cates a degree of colour matching for the given estimation. The local maxima in this
weighted feasible set indicate likely surface matchings, which we will consider as likely
white point interpretations. Next, we give the procedure steps of the depicted method.

The correlation between SM and the image gamut we propose is complex if we
notice that the image gamut varies in its size and is rescaled for each different diagonal
illuminant change (see eq. 4.1). This means that to compute each correlation value
a different image gamut should be calculated. In [13] a similar problem is solved by
introducing the log space. The acquisition conditions change in log space is a trans-
lation of the image gamut instead of a scaling, and therefore the shape of the image
gamut remains the same. In rgb space, rgb values of an image, rgb1, are scaled by
an acquisition conditions change, αβγ, to obtain the corrected rgb values, rgb2 (eq.
5.4),
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⎛
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⎠ (5.4)

In log rgb space, log(rgb1) values are translated by log(αβγ) to obtain the cor-
rected log(rgb2) values (eq. 5.5),

log
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g2

b2

⎞
⎠ = log
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g1
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⎞
⎠ + log
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γ

⎞
⎠ (5.5)

This is an interesting property that can be used in the correlation process we
want to perform. Thus, we can define a log semantic colour matrix with log re-
sponses, SM ′, and correlate it with the log image gamut. Then, we can compute a
direct cross-correlation between them, which will give us the correlation values for all
the white point estimation changes. The correlation value in this log space has the
same meaning as in the previous space: a degree of colour matching. We will only
have to notice that the acquisition conditions changes proposed by each correlation
value is a translation in the log space instead of a scaling in the non-log space.

Therefore, we define the log semantic colour matrix, SM ′, to contain information
in the log space,

SM ′(�c′) =
{

1 if �c′ ∃ in log(ρcn)
0 elsewhere

(5.6)

where �c′ is the log of a colour vector and �c′ ∈ Γ′
c (Γ′

c is the gamut of the log
responses under the canonical illuminant). The range ot the SM ′ matrix must be
quantized in order to compute the matrix to work with.

Once we have built the SM ′ matrix, we can use it for colour image interpretation.
Let I be an image to interpret, we define the histogram of the image in the log space as

H ′(I) = hist(log(I)) (5.7)

where hist() is the histogram function. H ′(I) contains statistical information of
the coloured surfaces in the image and we propose to combine it with SM ′ to obtain
a surface matching correlation map with the colour focals. This operation is defined as

CM(I) = H ′(I) � SM ′ (5.8)
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The cross-correlation, �, between H ′(I) and SM ′ in the log space delivers high
values when colours in H ′(I) adapt to the chromaticities in SM ′. Assuming Von
Kries’ diagonal model assures us to maintain relational colour constancy, and the
relation between the coloured surfaces is preserved. Each correlation value is related
to a different white point estimation change, considering the shift of H ′(I) within
SM ′. To perform the cross-correlation depicted in eq. 5.8, we propose to use the fast
fourier transform [24] and perform a dot product in the frequency space, to reduce
the complexity, O(NlogN), and the computation time.

Thus, a diagonal acquisition conditions change, �qi, in the non-log space is given by,

�qi = e�ci
′ − �cm

′
(5.9)

where �ci
′ is a colour vector in the log-space with a correlation value and �cm

′ is
the center of Γ′

c. In the case of a 3 channel sensor the diagonal change is �qi = (α, β, γ).

In this way, a correlation value is related to a diagonal white point estimation
change. The cross-correlation computed, CM(I), delivers a voting map of surface
matching, that is a measure of how well the coloured surfaces in the image do adapt
to the focal colours in SM ′. The peaks in this correlation map can be taken as white
point estimations that give a high degree of colour matching. Hence, the different
likely acquisition conditions interpretations can be found by taking the local maxima
in this correlation map, ûi, i = 1..ns, where ns is the number of local peaks.

ûi = max(CM(I)) (5.10)

The function max() returns a local maximum in the correlation space. A point ui

is a local maximum of CM(I) if there exists some ε > 0 such that CM(ui) ≥ CM(u)
for all u with |u−ui| < ε. To find the local maxima we propose to use a morphological
tophat transform [75, 25] to get regions with peaks, and within them we have taken
the chromaticities with maximum correlation value.

Each Ûi must be related to an acquisition conditions change, q̂i, using eq. 5.9. The
set of q̂i are likely white point estimations. Thus, the different image interpretations,
Ii, can be computed using the different estimations of acquisition conditions,

Ii = q̂iI (5.11)
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and therefore obtain the result of the different sets of feasible colour matchings.

Summarising the method, first we have to select the semantic focals and build
SM ′. Then, for a given image I, the algorithm is carried out through the following
steps:

1. Computing the histogram of the image in the log space, H ′(I) (eq. 5.7).

2. Computing the cross-correlation between H ′(I) and SM ′, using the fast fourier
transform, obtaining a correlation map CM(I) (eq. 5.8).

3. Extraction of the peaks in CM(I), ûi, as different white point interpretations
(eq. 5.10).

5.5 Experiments

We have tested the method with some images of the Simon Fraser database [6]. We
have considered images with surfaces of synthetic colours. It is difficult to evaluate
the performace of the method, as we do not aim to give a single solution, but a set
of likely interpretations when it is possible. For the tested images, we will show the
corrected image acording to the white point estimation and also their interpretations,
i.e. the segmentation of the coloured surfaces that lead us to that interpretation.

5.5.1 Implementation details

Previously, we explain the parameters of the method used for the experiments. As
canonical acquisition conditions we have used a D65 light as illuminant and the RGB
Colour Matching Functions as a standard observer sensor. Then, as colour focals
we have used those from colour naming derived from an exhaustive psychophysical
experiment in [12] to build SM ′ (eq. 5.6). These focals comprise eleven synthetic
colours most used in the language: red, orange, brown, yellow, green, blue, purple,
pink, white, gray and black. We have also added the focals for skin colour, in order to
deal with common indoor scenes. We have used 50 bins per channel in order to gen-
erate the histograms used in the processing. This SM ′ matrix proposed can be used
to process any uncalibrated image, as it is given in CIE rgb (eq. 5.1), i.e. a standard
space. We assume that any image can be transformed to these canonical acquisition
conditions through a diagonal change. In figure 5.4 we show the SM ′ matrix created
with the proposed configuration, and that will be used in the subsequent experiments.

5.5.2 Interpretation of images

In the first experiment, figure 5.5, we can observe that for a given image, a scene of
some apples, our method delivers two different interpretations, along with the original
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Figure 5.4: SM matrix obtained considering the 11 focals of the colour naming
experiment, plus skin colour focals, and the canonical acquisiton conditions defined.

image which is another possible interpretation as well. In this case, the three inter-
pretations are consistent with the real world, since there exist apples of these three
colours: yellow (original image), red and green.

These three interpretations are given due to the surface matching process. In fig-
ure 5.6 we present the illuminant interpretations for another image of apples and we
can observe how coloured surfaces of the image have been matched with our set of
coloured surfaces to deliver these different interpretations.

Results for other images from the same database are shown in figures 5.7, 5.8, 5.9,
5.10, 5.11 and 5.12. In the figures we show the original images, followed by the il-
luminant estimations, the recovered images and their semantic interpretation, where
a labelled image is shown according to the set of matchings that has given a high
degree of correlation. Each correction proposed is a coherent interpretation with a
set of colour matchings, which can be useful in a higher level process where we would
like to interpret not only colours, but objects in the image.

Even though our method is not designed for calibration but to give coherent in-
terpretations, we have also tested it with the 321 images in the Simon Fraser set,
which offer calibrated information as well, with a white reference for each one, to see
how well does it estimate the illuminant. Our method is not designed to estimate
illuminants, but acquisition conditions. Also, we impose a canonical illuminant and
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Figure 5.5: Results of an image with apples. The method derives 2 different in-
terpretations: red apples and green apples, whereas in the original image the apples
appear yellow.

a sensor which are different from the canonical illuminant and sensor from the Simon
Fraser image set. However, the sensor in both acquisition conditions are white bal-
anced, therefore we found interesting to test the performance of our method. The
experiments have been performed as in [8] and we have computed the recovery an-
gular error of the illuminant which can be added to the results in the first column in
Table II in Barnard et al. paper. Our method has given a 10.39 angular error, which
we consider is good enough since we do not use sensor information and our goal is
not to perform colour constancy for device calibration. The best results shown in [8]
are achieved by gamut mapping methods, with an angular error of 5.6, which is good
performance, but they need the sensor information used in the acquisition.

5.6 Selection of significant solutions

In the experiments presented, we have looked for local maxima within the weighted
feasible set in order to obtain the different semantic white point estimations. However,
it might be interesting to keep more significant information of the weighted feasible
set than just the local maxima. In this way, we could reduce the weighted feasible
set of solutions in a useful form that could be properly used in following high level
processing. To this end we propose the following hypothesis:

Hypothesis 5 It is possible to obtain a reduction of the weighted feasible set, keeping
the relevant information for interpretation.

Considering the significant information in the computed correlation map, the max-
ima, we propose to compact it by extracting the ridges within it. Ridges define local
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Figure 5.6: Illuminant interpretations of an image along with the semantic inter-
pretations that have delivered them.
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Figure 5.7: Results for images of the Simon Fraser database. For each image we
show a set of possible illuminant estimations along with their semantic interpretation.
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Figure 5.8: Results for images from the Simon Fraser data set (2).
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Figure 5.9: Results for images from the Simon Fraser data set (3).
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Figure 5.10: Results for images from the Simon Fraser data set (4).
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Figure 5.11: Results for images from the Simon Fraser data set (5).
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Figure 5.12: Results for images from the Simon Fraser data set (6).
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Figure 5.13: A one dimensional distribution with 2 local maxima, where other
points, Pi, are useful to establish a relation between the local maxima.

maxima and paths with a unique direction of increase. Since we look for high correla-
tion estimations we propose to extract the ridges of the weighted feasible set. In this
way, feasible interpretation information can be compacted and also mathematically
modelised for a proper subsequent processing. Next we present the ridge detection
process performed to obtain the relevant information within a correlation map.

5.6.1 Ridge detection

In order to achieve a correct spatial reduction of a d-dimensional distribution, we
must keep just the most important and representative information. The information
retrieved for local maxima is useful to this end, since when a local maximum occurs,
there is significant information related to its surroundings. If we keep just the local
maxima, the information about relationship between different maxima is lost. The
main problem of this approach is that local maxima are one-dimensional information,
and it is not enough to achieve a valid description of distributions with more than
two dimensions.

In figure 5.13, we show a distribution with two local maxima, M1 and M2, and a
collection of points Pi = P1, P2, P3. Considering just M1 and M2, the shape of the
distribution is not enough described. Without knowing points Pi, it is not possible
to say if M1 and M2 are isolated points or if they are connected.

The problem of finding the Pi points is directly related with the problem of ridge
extraction [15, 99]. In the frame of ridge extraction, M1 and M2 are the peaks of the
distribution, and Pi are ridge points. Hence, the ridge extraction accomplishes two
requirements: first, the local maxima appear, and second, the spatial relationship
between these maximums is represented by the line which joins the peaks across
the path with maximum height. However, not all distributions have the shape of
a regular relieve. And if we directly apply a ridge extraction algorithm, we might
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keep some non-relevant information. Thus, we should find a method to measure
how much significant each point is, in order to remove the non-representative ridges.
Then, we will apply a ridge extraction algorithm which allows us to extract just these
representative ridges.

Creaseness analysis

To measure how much important are the points in a distribution, we will take into
account the creaseness analysis proposed in [62]. This creaseness analysis delivers a
likelihood value to be part of a ridge to every point.

Let G(x, σ) be a d-dimensional Gaussian centered at x, with normal deviation σ,
and w̃ the dominant gradient vector in a neighbourhood with size proportional to σ,
e.g., the dominant direction of this neighbourhood. The structural tensor assumes
that every point has a preferred orientation. When the structural sensor is combined
with the normal vector, it delivers a magnitude of how the surface orientation and
the surface tension agree. Hence, if B = x1, ..., xr , are the set of points that form a
discrete boundary, C, of a neighbourhood centered on x, and N = n1, ..., nr are the
set of unit normal vectors of B, then the multilocal creaseness measure k̃d at xi in
the discrete case can be defined as,

k̃d = −d

r

r∑
k=1

w̃k
t · nk (5.12)

Therefore, the creaseness value is the average of the dot product between the domi-
nant gradient vector of a neighbourhood and the normal vector of a point belonging to
this neighbourhood. That is, the creaseness measures the degree of similarity between
the direction of a point and the dominant direction of this point’s neighbourhood.

Since the dominant gradient vector of a neighbourhood is the direction where the
most meaningful change on orientation happens, the structural tensor will be a good
description of the hypersurface shape, because the shape of a surface can be related
to its changes. For instance, the shape of a cube can be related to its twelve edges.
Thus, in order to find the most representative information of a distribution, we must
just keep the points with a high creaseness value. These points belong to the curves
that follows the gradient direction from one maximum to another through a saddle
point, the so-called watershed curve [63].

The watershed algorithms are based on an immersion process. Imagine we make
a hole in each minimum of the landscape and we plunge it into a lake with a constant
vertical speed. The water entering through the holes will flood the surface of the
landscape. During the flooding, two or more floods coming from different minima
may merge. We build a dam on each of these points. At the end of the process only
the different dams emerge and they constitute the watershed of the landscape. In the
practice, in order to achieve good results, it is not enough to pierce the minimums.
Given difficulties to find the local minima and the irregularities of the landscape, we
must to put marks on the areas that will be pierced. Also, independently to the se-
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lection criteria to find the potential marks, there exist some problems that arise some
undesired results with this flooding process.

A common way to find the marks is to work with the negative values, the valleys,
which divide the different existing mountains. However, the isolated ridges with neg-
atives values just in one side or even just with positive values became a problem for
this criterion. The watershed definition coincides with this from the ridge, hence this
problem is just a ridge extraction problem. In existing literature there are a lot of
methods oriented to ridge extraction, in special, on medical image papers [4, 5]. We
will consider an approach based on these algorithms.

Ridges are commonly defined as a local maximum in one direction. Intuitively,
a ridge can be defined as the path you follow on a mountain, where there is always
a downward slope both to your left and to your right. In image analysis, that is a
connected sequence of pixels having intensity values which are higher in the sequence
than those neighbouring the sequence. Formally, to find a ridge we must search the
points which reach a local maximum in the gradient direction. The algorithm pro-
posed on a digital image is as follows:

Let p1 be a point of a ridge. The height of p1 is bigger than the other nd − 2
neighbours, where nd are the number of neighbours on a d-dimensional space. For
instance, for d = 2, nd = 8, and for d = 3, nd = 26. Because a ridge is a line, p1 has
two neighbours, p2 and p3, which belong to the ridge. Then, with neighbours p2 and
p3, the next cases can occur:

a) p1 is a local maximum.

b) p1 is not a local maximum. Then, either p2 or p3 can be strictly higher, than p1.

c) p1 is not a local maximum and p2 and p3 are higher (p1 is a singularity).

A graphical representation of each case is shown in figure 5.14.

Since the third case is just a singularity, the first step is to find the points of the
first type. If we take the problem as how many higher neighbours can have a ridge
point, the problem is reduced towards an easy point classification as follows: points
with not more than one higher neighbour will be a ridge point. As a result, each point
will be labelled with the number of higher neighbours. Then, we keep the points la-
belled with a value lower than two, giving point in a) and b). Finally, each different
sequence of connected points is labelled as a different ridge in order to distinguish
from one ridge to another.

But as we have introduced before, there exist singularities that this classification
method does not take into account. The problem arises when two or more ridges
converge. In this case, the convergence point, which effectively is a ridge point, has
more than one higher neighbour. Thus, we must define some criteria in order to
include these singularities on the final result. This criteria has to distinguish between
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a) b) c)

Figure 5.14: Different cases of a ridge point: (a) local maximum, (b) p1 is a ridge
point but not a peak, then, just p2 can be higher, and (c) p1 is a local minimum of
the ridge because both p2 and p3 are higher.

a convergence point and a point that is just a neighbour of a ridge. For a convergence
point different paths are from different ridges. Hence, it is easy to know that, because
each ridge has a different label.

5.6.2 Results

We have used the ridge extraction procedure presented, to select significant solutions
within the weighted feasible set of solutions obtained with our semantic correlation
method. In figure 5.15, we show the ridges obtained for an image from the Simon
Fraser database. In figure 5.16 we present the profile of the ridges versus the corre-
lation value. Above each ridge profile we show two numbers: first a ratio between
the portion of correlation included in the ridge and the compression of the correla-
tion map (ratio of ridge solutions versus feasible solutions), and second the portion
of correlation included in the ridge. Then, in figure 5.17 we show the corrected im-
ages for the maximum correlation in each ridge, along with a label of the illuminant
colour of the scene given by our method. The label of the illuminant colour has been
obtained through the computing of the inverse of the diagonal map, which represents
the estimated illuminant colour, and the use of a voronoi diagram of the focals in
SM . The global compression ratio of the correlation map for this image is 0.0039,
and the global ratio of correlation included in the ridges is 0.0881.

In figure 5.18, we show the ridges obtained for another image from the Simon
Fraser database. Again, in figure 5.19 we present the profile of the ridges versus
the correlation value. And in figure 5.20 we show the corrected images for the max-
imum correlation in each ridge, along with a label of the illuminant colour of the
scene given by our method. The global compression ratio of the correlation map for
this image is 0.0026, and the global ratio of correlation included in the ridges is 0.0873.

Finally, in figure 5.21, we show the ridges obtained for a third image from the
Simon Fraser database. Again, in figure 5.22 we present the profile of the ridges ver-
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Figure 5.15: Ridges extraction from the weighted feasible set for a Simon Fraser
image.

Figure 5.16: Profile of the ridges extracted from the weighted feasible set for a
Simon Fraser image.



5.6. Selection of significant solutions 95

Figure 5.17: Corrected images for the maximum correlation of each ridge and a
label of the illuminant colour of the scene.

Figure 5.18: Ridges extraction from the weighted feasible set for a second Simon
Fraser image.
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Figure 5.19: Profile of the ridges extracted from the weighted feasible set for a
second Simon Fraser image.

sus the correlation value. And in figure 5.23 we show the corrected images for the
maximum correlation in each ridge, along with a label of the illuminant colour of the
scene given by our method. The global compression ratio of the correlation map for
this image is 0.0017, and the global ratio of correlation included in the ridges is 0.0970.

The mean of the compression ratio of the correlation map for the 321 Simon Fraser
images is 0.0025 and the mean of the ratio of correlation included for these images
is 0.0897. This confirms that through ridge extraction we significantly reduce the
amount of information considered in the correlation map, keeping the important in-
formation, since ridges by definition include the different local maxima. Furthermore,
ridges can be mathematically modelised, which could lead us to obtain the function
which represent the interpretations of an image. This modelisation could be interest-
ing for a subsequently interpretation processing, such as the introduction of illuminant
constraints, etc.

5.7 Discussion

The proposed method and the following selection of the most significant solutions,
enables us to reduce the number of interpretations.

In this chapter we have not proposed a new method for colour constancy, but
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Figure 5.20: Corrected images for the maximum correlation of each ridge and a
label of the illuminant colour of the scene.

Figure 5.21: Ridges extraction from the weighted feasible set for a third Simon
Fraser image.
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Figure 5.22: Profile of the ridges extracted from the weighted feasible set for a third
Simon Fraser image.

Figure 5.23: Corrected images for the maximum correlation of each ridge and a
label of the illuminant colour of the scene.
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a method for image interpretation under uncalibrated conditions. Therefore, we do
not aim to perform perfect colour constancy in the classical point of view, but use
the frame of the existing colour constancy methods to deal with the problem in the
uncalibrated case. Uncalibrated colour constancy is a less constrained problem than
the calibrated case, and therefore more feasible solutions exist. Effective colour con-
stancy algorithms are designed for calibrated conditions, where the sensor information
is known. Also, most of them only consider a single solution, which in the uncali-
brated case might be too restrictive, and to consider different feasible interpretations
can be useful in an image understanding frame.

To sum up our proposal, what we do is to adapt the existing calibrated methods
to the uncalibrated case, by changing the usual assumptions used. It has been done
in this way:

• We have proposed to replace the classical estimation of the illuminant by the
estimation of the acquisition conditions, Ak(λ), which comprise both illuminant
and sensor.

• We have introduced a visual cue related to colour constancy: colour matching.
Through colour matching, we introduce information of the expected coloured
surfaces in the images, and these will be the surfaces to match with in the colour
matching process.

• We have introduced restrictions to the problem to constrain it, and, subse-
quently, a method to estimate different feasible interpretations of the white
point of an image has been proposed.

In the frame of image understanding, further knowledge about the scene content
might be introduced in a higher level process to select between the set of possible in-
terpretations given (e.g., if we expect an apple in an image we would only choose those
interpretations in which the apples are red, green or yellow, and discard any interpre-
tation where the apples are blue or some other unrealistic colour). The correlation
map obtained with the method could be reduced for interpretation by computing its
medial axis, since it would represent the different feasible solutions in a compacted
way.

Also, the proposed method might be extended to introduce more restrictions to
the problem, just by adding a restriction matrix that could be easily combined with
the proposed SM ′ matrix. For example, if we would like to restrict the set of feasible
illuminants, we could build an illuminant probability matrix, P I , where the proba-
bility of finding different illuminants might be mapped to the illuminant change they
produce. This probability matrix P I can easily be introduced to the method through
eq. 5.13.

CM I(I) = CM(I) · P I (5.13)
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Other restrictions might be introduced in the same way, to further constrain the
problem and, in the end, find a single solution when possible. In this frame of uncali-
brated conditions, the introduction of knowledge of what we expect to find in images
is a way to find a unique feasible solution.



Chapter 6

Summary and conclusions

In this work we have studied how to represent colour information for an image an-
notation project. The RGB values acquired by a camera need to be processed if we
aim to use them as descriptors of the surfaces in a scene, since colours in an image
tend to be biased by the illuminant of the scene. Image annotation imply to assign
colour names to image regions, therefore we firstly have worked on skin detection and
afterwards for more general colour naming. Finally, we have proposed a new line of
research for more general semantic interpretation. There exist two main approaches
to deal with the colour variability problems, these are:

Colour invariant methods are interesting, since they do not need to know any
information of the acquisition conditions and can be used in any type of images. They
aim to obtain image descriptors invariant to some features of the scene, such as in-
tensity of the illuminant, colour of the illuminant, highlights, etc. We have performed
a skin colour modelisation and segmentation experiment for images under varying
illumination, considering intensity and colour changes, using some of these normal-
isations and compared their performance. We have proved that when we deal with
just illuminant intensity changes, chromaticity coordinates deliver best performance,
but under illuminant colour changes it is better to use comprehensive normalisations.
However, invariant normalisations are not good if we have to perform a general colour
naming task, since they normally remove intensity information, which is important
to distiguish some colours.

Colour constancy methods aim to recover the illumination of images and to
obtain a balanced representation of the image, where colours can be taken as physical
descriptors of the surfaces in the scene. We have proposed a colour constancy method
that works for calibrated conditions based on colour matching. However, since in
computer vision we do not always know the sensitivity curves of the acquisition de-
vice, we have proposed a new frame to work under uncalibrated conditions. In this
way, we have proposed a method to deal with images of unknown origin based on
existing colour constancy methods for calibrated conditions, but where no previous
knowledge of the acquisition conditions is required. In this new approach, our goal is

101
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not to achieve perfect colour constancy but to find meaningful white point estimations
which deliver different interpretations of the colours in the images. In this way, we do
not look for a unique solution but consider any solution which gives some meaning to
the coloured surfaces in the image, since in the image annotation problem under un-
calibrated conditions a single solution might be too restrictive. These interpretations
are guided by some previous knowledge, that we have introduced as expected colours
in the images. Therefore, each white point estimation will be given by a concrete
interpretation of the colours in the image.

6.1 Contributions

The essential contributions of this work are:

• A reformulation of white point estimation for uncalibrated conditions which
looks for multiple and most interpretable solutions.

• The introduction of the colour matching visual cue to guide the estimation
of the white point.

• Introduction of high-level information in the colour matching process, that is,
semantic information regarding expected colours in the images.

• A computational algorithm to select the white point estimation for
uncalibrated conditions which delivers multiple interpretable solutions through
a colour matching process which introduces semantic high-level information.

• The relaxed grey-world assumption which bounds the location of optimal
solutions under calibrated conditions.

The proposed method is based on existing colour constancy approaches and it de-
livers feasible semantic white point estimations according to different interpretations
of the colours in the images. The colour matching process has been proposed to con-
strain the feasible set of solutions through the introduction of high-level information.
Thus, we compute a weighted feasible set and within it we can choose solutions which
deliver a high-level interpretation of the coloured surfaces in the scene. The weight
in this feasible set represents a degree of colour matching for the corresponding solu-
tion. With this approach we do not aim to achieve perfect colour constancy, since for
uncalibrated conditions is not feasible, but to give different feasible interpretations
of the acquisition conditions of an image, according to the colours that are present
in the image. Therefore, we deliver a recovered image and its colour interpretation,
which might be useful for a higher level image understanding processing, such as ob-
ject recognition.

Other contributions of this work are:
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• Demonstration that it is possible to select a reduced number of interpretable
solutions, through ridges extraction.

• A computational colour constancy algorithm based on the relaxed grey-
world assumption, which performs a colour matching process to deliver a sub-
sampling of the feasible set of solutions.

• Experiments to test existing evaluation procedures of colour constancy methods.

• Use of comprehensive normalisations for skin colour detection.

The method proposed for colour constancy based on the relaxed grey-world as-
sumption delivers a reduced feasible set of solutions, which has been proven to deliver,
on average, better performance than the feasible set obtained by Forsyth’s CRULE,
and similar results have been obtained when using existing heuristics with some ex-
periments with synthetic data. Also, existing evaluation methods might not be useful
for colour constancy for uncalibrated conditions.

6.2 Future directions

In this work we have left open different lines of research, that we find interesting to
go further:

• Building other semantic matrices (SM) in the semantic white point estimation
method, regarding other semantic colour sets, such as natural colours or hair
colours, and an application to test it.

• Introduction of other restrictions, appart from colour matching, to constrain
the problem and improve the results. For instance, we could introduce a matrix
of illuminant restrictions, where we could add probability information to find
different feasible illuminants.

• Use of the semantic white point interpretations in a high-level image under-
standing system, which could introduce further assumptions to decide from the
different colour interpretations proposed. This system could introduce more
high-level information, i.e. more knowledge about the real world, which could
lead us to select a single meaningful solution.

• Comprehensive interpretation of ridges in order to deliver semantic illuminant
descriptors, such as sunny, cloudy, indoor, etc. The first and easiest experiment
would be to calculate the intersection between the obtained ridges with the
Planckian locus.

• An application under calibrated conditions to use the semantic white point
estimation method, where other semantic colour sets can be introduced.
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The essential contribution of this work has been presented and justified but not
completely proved. A proper evaluation would require specific and complex psychoph-
syical data, we are already working on:

• Definition of a set of psychophysical experiments to determine in which specific
conditions the nameability assumption holds.

• Construction of a database of natural images with a set of likely white point
estimations which can be obtained by the consensus from a wide group of ob-
servers.



Appendix A

Fisonomies project

We have been working on a surveillance system which needs the ability of automatic
people detection in images with a complex background and varying illumination.
This system acquires images from people entering a building to subsequently extract
textual descriptors based on people appearance. This information is stored in a
database for later queries of people inside the building.

A.1 People detection for appearance description

The people description module, where we have considered colour invariant normali-
sations for skin colour detection, is a part of a general surveillance system. Images
of people entering a building are processed while they are checking-in (figure A.1).
Textual descriptors based on people appearance are extracted from these images and
this information is saved in a global database where the security staff of the building
can perform some queries.

In this way, if they see in a camera inside the building someone who is causing
problems, and can perform these queries to obtain information that identifies this
person. Here is where the description module acquires importance, because in our
database we have information about the appearance of the people who have entered
the building and that has been extracted. With this purpose, the system allows the
user to make queries formulated in terms of textual descriptors, to retrieve those
images from the database agreeing with the descriptors of the query. Queries are
formulated in terms of colour, texture and structural properties of clothes that people
are wearing. The system aims to automatically build an appearance feature vector
from an image acquired while people is checking-in in front of the desk. In figure A.2
we show real images of the entrance of the building we have been working in.

Retrieving images from large databases using image content as a key is a largely
problem studied in computer vision. Two major approaches can be stated. First, sim-
ilarity retrieval consists in looking for images in a database using a reference image as
query. The second approach concerns browsing applications and consists in retrieving
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Figure A.1: Scheme of the registration process which involes our system.

images by pictorial content, i.e. using symbolic descriptors as indices. Regarding the
features used as the basis to formulate queries, usually early visual primitives such as
colour and texture are used. Sometimes, structure of objects in the image is impor-
tant. A number of works combine low level visual cues,such as color and texture, with
higher level information such as structure (e.g. [41, 88, 61]). Ous system follows this
approach. Queries are formulated in terms of textual descriptors like ’we are looking
for a man in a red shirt’ that are compared with descriptions stored in the database
that were previously extracted from the input images. In figures A.3, A.4 and A.5 we
show different steps of our description/retrieval system: constructing the apppearance
feature vector in the registration (A.3), formulating a query on the people that have
been registered entering the building (A.4) and the results of the query (A.5).

Our approach to the people description module focus on a computational extrac-
tion of clothes features that is based on a four-step process. First, the person must
be located in the center of the image. Our skin segmentation module will detect skin
colour regions in the image. In this way, people will be detected and the regions
that must be analised will be given. Then, a colour feature vector of the pixels in
the regions of interest is computed. After a first region initialisation and considering
colour properties of regions of interest plus edges information, a merging process is
proposed, which will join any neighbouring image regions with similar colour prop-
erties. Finally, a high level interpretation of these image regions will allow to model
a structural description on the clothes that people are wearing. Some examples of
content-based queries can be seen in [92]. They help to illustrate how the descriptor
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Figure A.2: Sample images from the entrance of the building we have to deal with.

proposed in the people description module can behave on the system presented. Also,
a more detailed explanation of how the high-level descriptor operates can be found in
[2].
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Figure A.3: The different steps in the description/retrieval system: constructing
the appearance feature vector in the registration.

Figure A.4: The different steps in the description/retrieval system: formulating a
query on the people who have been registered entering the building.
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Figure A.5: The different steps in the description/retrieval system: the results of
the query.
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