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A Low Computational-Cost Method to Fuse IKONOS
Images Using the Spectral Response
Function of Its Sensors

Maria Gonzalez-Audicana, Xavier Otazu, Octavi Fors, and Jesus Alvarez-Mozos

Abstract—Probably the most popular image fusion method is
that based on the intensity—hue—saturation (IHS) transform. Al-
though the spatial enhancement of the IHS-merged images is high,
the distortion of its spectral information may also be important.
In recent years, several methods have been developed to minimize
this problem, being those based on wavelets widely used. How-
ever, the high computational cost of these approaches makes them
unattractive to applications that involve fast merging of very large
volumes of data. In this paper, we present a low computational-
cost image fusion method based on the fast IHS transform, which
uses the information of the spectral response functions of the low-
resolution multispectral (LRM) and high-resolution panchromatic
(HRP) sensors to minimize the spectral distortion problem. Using
this information, we directly obtain from the HRP image the in-
tensity image that the LRM sensor would observe if it worked at
a spatial resolution similar to that of the HRP image. The exper-
imental results carried out on IKONOS images demonstrate that
the proposed approach can perform as well as wavelet-based ap-
proaches with a lower computational cost.

Index Terms—Fast intensity—hue—saturation (IHS) transform,
IKONOS images, image fusion, spectral response functions
(SRFs).

1. INTRODUCTION

ITH the launch of the IKONOS and QuickBird satel-

lites, the development of new image fusion methods has
become an interesting topic for both researchers and users of
remote sensing data. Given the design constraints of these sen-
sors, there is an inverse relation between their spatial and spec-
tral resolution. The low-resolution multispectral (LRM) sensor,
characterized by capturing the radiance from the different land
covers in a high number of bands of the electromagnetic spec-
trum, does not have an optimal spatial resolution. However, the
high-resolution panchromatic (HRP) sensor achieves a high spa-
tial resolution by capturing at the same time the radiance from
the land covers in a unique and wider band of the spectrum.
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An increasing number of applications, such as feature detec-
tion, change monitoring, urban analysis, and land cover classi-
fication, often demand the use of images with high spatial and
spectral resolution for the best achievement of their objectives.

The fusion of LRM and HRP images, with complementary
spectral and spatial characteristics, has become a powerful so-
lution providing a single high-resolution multispectral image
(HRM) with high spatial and spectral resolution simultaneously.

Probably the most popular image fusion method is the one
based on the intensity—hue—saturation (IHS) transformation pro-
posed by Haydn et al. [1]. Although this method provides a
HRM image with enhanced spatial quality, its spectral informa-
tion differs from that of the LRM image.

This modification of the spectral information during the fu-
sion process is not acceptable when the resulting HRM image is
going to be used, for example, to extract thematic information
through a spectral classification procedure.

Trying to minimize the above-mentioned limitation, Chavez
proposed a new fusion method: the high-pass filtering (HPF)
method [2], [3]. This method could be considered the prede-
cessor of an extended group of image fusion procedures based
on the same principle: extracting from the HRP image the spa-
tial detail information not present in the LRM image, to later
inject it into the latter.

In the past few years, several researchers have proposed dif-
ferent image fusion methods based on this concept, employing
the discrete wavelet transform [4]-[9], Laplacian pyramid algo-
rithms [10], [11], or “4 trous” wavelet transforms [12], [13] to
perform the detail extraction and injection processes.

However, no explicit physical information of the detec-
tion system has been taken into account in the former fusion
methods. Recently, we [14] proposed a new approach that
incorporates information from the spectral response of the HRP
and LRM sensors to estimate the amount of spatial detail of the
HRP image that has to be injected into the sth band of the LRM
sensor. This approach, called the window spectral response
(WiSpeR), was successfully applied to wavelet-based image
fusion methods.

Although the wavelet-based image fusion methods provide
HRM images with both high spatial and spectral quality, their
high computational cost makes them less attractive when very
large volumes of data have to be merged quickly.

In this paper we present a low computational-cost image fu-
sion method, based on the WiSpeR approach, that uses a fast
IHS (FIHS) linear transform [15] to inject the spatial informa-
tion of the HRP image into the LRM image.
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We have determined its validity to fuse IKONOS images by
analyzing the spectral and spatial quality of the resulting fused
images. Furthermore, we have compared these results with those
obtained applying the FIHS fusion method with spectral adjust-
ment proposed by Tu et al. [16], as well as with those obtained
applying a FIHS wavelet-based image fusion method.

When applying any of these image fusion methods, it is nec-
essary that the HRP and LRM images be accurately superim-
posed. Therefore, both images have to be coregistered and the
LRM images need to be resampled to make their pixel size the
same as that of the HRP image. In this work, we have used a
bicubic interpolator to resample the LRM images.

In order to assess the quality of the resulting images, they
should be compared with the image that the LRM sensor would
theoretically collect if it offered the same spatial resolution as
the HRP [17]. Since these images do not exist, we worked with
spatially degraded images. The method we have followed to de-
grade the spatial resolution of the HRM and LRM images is
similar to that proposed by Wald et al. [17], i.e., blurring using
a low-pass filter and subsampling.

II. FAST IHS IMAGE FUSION METHOD

As previously mentioned, the IHS transform is widely used
for image fusion purposes. Probably, the widespread use of this
transform to merge images relies on its ability to separate the
spectral information of an RGB composition in its H and S
components, isolating most of the spatial information in the
component [18].

When IHS-based fusion methods are applied, the I image
corresponding to the LRM image in IHS space is replaced by
a gray-level image with higher resolution (I’) and transformed
back into the original RGB space.

Several different algorithms have been developed for con-
verting RGB values into values of IHS [19], [20]. These differ
not only in their processing time but also in the methodology
used to calculate the value of the I component.

If the conversion model between RGB and IHS spaces used
to fuse the LRM and HRP images is linear, the transformations
between these spaces are done using the following equations:

I [ 1/3 1/3 1/3 R

vl | = | —V2/6 —V2/6 2v/2/6|-|G (1)
2] [ 1/vV2 o -1/v2 0 B
(R'T [t —1/vV2 1/V2 r

G'|=|1 —=1/vV2 —1/V2]|- |0l ()
| B |1 V2 0 v2

where R, G, and B represent the corresponding bands of the
resized LRM image, v1 and v2 represent the x and y axes in
the opponent (R-G,B-Y) Cartesian coordinate system, and [ in-
dicates the z axis. R, G’, and B’ represent the corresponding
bands of the resulting HRM image. The H and S components
can be estimated using the following equations:

H = tan~! (Z-f) 3)

S = w12 +v22, 4)
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The implementation of the IHS method following (1) and (2)
requires several multiplicative and additive operations, being its
application costly from a computational point of view. Tu et al.
[15] have proposed a FIHS method to perform the fusion process
with lower computational cost, rewritten (2) as

R’ 1 -1/vV2 1V2 ] [I+(I'-1)
G'|l=|1 —-1/vV2 —-1/vV2]- vl
B 1 V2 0o | | w2
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=1 -1/v2 -1/V2|-| vl | =|G+56
1 V2 0 | | »2 B+6
[R+6
= |G+6 ©)
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where § = I’ — I, being I the mean of R, G, and B.

If after the fusion process, an RGB-IHS transform is applied
to the resulting HRM image, the H component remains un-
changed, being the change in the Saturation component directly
related with the value of 6 [15]

S 1 I

T T T+ ©

where S’ represents the saturation value after fusion.

The higher the value of 6, the higher the change in the S com-
ponent and the higher the difference between the spectral infor-
mation of the resulting HRM image and the spectral information
of the LRM image.

Traditionally, the HRP image directly replaces the I image,
and

§=I'—T=HRP-I. @)

When this image fusion approach is used, the spectral infor-
mation of the resulting HRM image differs from the spectral
information of the LRM image, being this difference higher in
the green-vegetated areas.

In order to solve this problem, and taking into account that the
spectral interval of the HRP sensor covers the spectral intervals
of the B, G, R, and near infrared (NIR) bands or the LRM sensor,
it is reasonable to suppose that also the NIR band has to be
included into the definition of the I component.

This way, and motivated by (5), the IHS transform can be
extended from three to four bands by

B B+§

@ | | ag+s

B |=| rR+s ®)
NIR/ NIR + §

where § = I’ =T =HRP—Tand I = (B+ G+ R+NIR)/4.

When this image fusion method is applied, the difference be-
tween the HRP and the I image is lower from a radiometric
point of view, being also lower the change in the S component,
and consequently, the distortion of the spectral information of
the resulting HRM image.

Hereafter we will name this method extended fast IHS ap-
proach (eFIHS).
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Fig. 1. Spectral Response Functions corresponding to IKONOS sensors.

III. INTRODUCTION OF THE SPECTRAL RESPONSE FUNCTIONS
ON THE FAST GIHS IMAGE FUSION APPROACH

The spectral response function (SRF) of a sensor defines the
probability a photon of a given frequency is detected by this
sensor. Let ¢(v) be the SRF of the HRP sensor and ¢;(v) be the
SRF of the 7 -th band of the LRM sensor.

Let the event mi be the detection of a photon by the LRM
sensor. The probability of the event m; is

P(m;) = / i(v)dv. 9)

Similarly, the probability a photon is detected by the HRP
sensor can be defined by the probability of the event p

_ / $(v) dv.

In geometrical terms, the probability of the events m; and p
can be understood as the area below their corresponding SRFs.

For IKONOS sensors (Fig. 1), the area below ¢(v) function
is much higher than the area below ¢;(v) function. This means
that for a specific observed object, the HRP sensor detects more
photons than each LRM; sensor. For this reason it is important
to consider the SRF of both the HRP and LRM; sensor with the
aim of estimating the number of photons that the LRM; sensor
would detect if it worked at a spatial resolution similar to that
of the HRP sensor.

Given the event p, the probability of the event m; is

(10)

P(m; Np)
P(m; = — 11
(mi | p) Po) (11)
being
P(m;Np)= /nlin((pi7 @) dv. (12)

That is, given a photon detected by the HRP sensor, the proba-
bility that it is also detected by the LRM sensor is defined by the
quotient between the intersection areas of ¢; () and @;(v) (see
Fig. 1), and the area of the function. Similarly, given a photon
detected by the LRM sensor, the probability to be detected by
the HRP sensor is

P(m; Np)

P(m;). (%

P(p|m;) =

1685

Note that (11) defines the fraction of HRP photons below
the LRM ¢;(v) function. Similarly, (13) defines the fraction of
LRM; photons below the HRP function.

Letn,; and n, be the number of photons detected by the LRM;
and the HRP sensors. The total number of photons simultane-
ously detected by the LRM; and the HRP sensors (n,, ;) could
be defined by

npi = P(m;|p)-n (14)

or by

npi = P(p|m;) - n;. (15)
If we combine these equations we can predict, given the
number n,, of photons detected by the HRP sensor, the number
n, of photons that the LRM; sensor should detect [14]
, _ P(mi|p)

IV. FAsST IHS IMAGE FUSION APPROACH THAT TAKES
INTO ACCOUNT THE SRF OF THE SENSORS

Considering that the image fusion method that we propose is
based on the FIHS transform extended to four bands, we define
the I image as

4
Zn/4—zpml|p inp

(p|mi)

a7

(18)

Since we know from data the number of photons detected by
the HRP sensor, we can estimate the I’ image that the LRM
sensor would observe if it worked at a spatial resolution similar
to that of the HRP sensor.

The difference between the I image obtained from the LRM
image and the I’ image obtained from the HRP image, mainly
corresponds to the spatial detail of the second image that is
missing in the first one.

The first part of (18) just depends on the SRF of the HRP and
LRM sensors, being independent of the images to be fused

19)

(20)

Taking into account the areas defined by the ¢(v) and ¢;(v)
functions corresponding to the HRP and LRM sensors, it is pos-
sible to estimate the - value for these images fusion. This value
is near 0.80 for the IKONOS satellite sensors.

In order to preserve, as much as possible the relative values
between the LRM bands, i.e., to preserve the spectral signatures
of the observed objects, the added spatial detail is proportional
to their original values.
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Fig. 2.

(a) Part of the initial IKONOS HRP image covering an agricultural area of Madrid (degraded to 4 m). (b) Initial IKONOS LRM image (degraded to 16 m

and resampled to 4 m). (c) Original IKONOS LRM image (4 m). (d) Fused image using the eFTHS method proposed. (e) Fused image using the method proposed
by Tu et al. (2.8 m). (f) Fused image using the eFIHS wavelet-based method. (g) Fused image using the eFIHS SRF method proposed in this paper.

The FIHS image fusion method that we proposed can be rep-
resented by

n'g npg+ (6 -np/n)

ng ng + (6 -ng/7) 21
n'p nr+ (6 -ng/M)
NNIR nNir + (0 - nNR/T0)

where n'g, ng, n'p, and ni g correspond to the radiance values
of the merged HRM image, np,ng, ng, and nyig correspond
to the radiance values of the resampled LRM image

4
ﬁ:Zniﬂl:I (22)
=1 ) .
5:1’—1:Z-<7-np—;m> (23)

being 1, and n; the radiance value of the HRP and LRM; im-
ages, respectively.

V. EXPERIMENTAL RESULTS

Two sets of IKONOS images collected in November 2004
and March 2005 and covering an agricultural area of Madrid
and the city of Pamplona, Spain, respectively, were used as HRP
and LRM test images (Fig. 2) to evaluate the performance of the
proposed image fusion method (eFIHS SRF) and to compare it
with the following fusion methods.

—eFIHS, considering that

B+ G+ R+ NIR
4

where B, G, R, and NIR correspond to the digital number
of the resampled LRM image.

—eFIHS with spectral adjustment applied to the intensity
image (eFIHS Tu) [16], considering that

a-B+b-G+ R+ NIR

3

§=1I—1=HRP -

(24)

6=1I—1=HRP—

(25)

where a and b are weighting parameters defined to take
into account that the SRF of the HRP image does not cover
the SRF of the blue and green band of the LRM sensor. The
value of these parameters was estimated experimentally
after the fusion of several IKONOS images. According to
the experimental results obtained by Tu er al. [16], the best
values for @ and b are 0.25 and 0.75, respectively.

—Extended fast THS wavelet-based method (eFIHSW),
using the “4 trous” algorithm to perform the multireso-
lution wavelet decomposition of the HRP image, consid-
ering that

b=T-T=(I+ w/HRP + wI}’IRP)_I = w/HRP"‘w;;RP (26)

being w;mp, w;;RP the first and second wavelet coeffi-
cients of the HRP image, that collect the spatial detail in-
formation of the HRP image corresponding to those struc-
tures with a size between the spatial resolution of the HPR
image and the spatial resolution of the LRM image. For
the practical implementation of the “4 trous” algorithm, a
two-dimensional filter associated to a scaling function is
used. In this work, we use a scaling function that has a

B-cubic spline profile.

In order to assess the quality of the merged images, we work
with spatially degraded images. The LRM and HRP images
were degraded to 16 and 4 m, respectively.

Merged images obtained by different methods have a spa-
tial resolution of 4 m, so the goodness of each image fusion
method can be evaluated by comparing the resulting merged im-
ages with the IKONOS original one.

This comparison is based on spectral and spatial criteria and
is done both visually and quantitatively.

In addition to the quality assessment carried out over the re-
sulting merged images, the computational complexity of each
image fusion method was analyzed.
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A. Spectral Quality of the Merged Images

— The spectral quality of the merged images will be eval-
uated by comparing their spectral information to that of
the original IKONOS LRM image [6], [17]. This com-
parison is performed quantitatively using the following
parameters.

— Correlation coefficient (CC) between the original and the
merged images. It should be as close to 1 as possible.

— The Erreur Relative Globale Adimensionnelle de Synthése
(ERGAS) index or relative adimensional global error in
the fusion [21]

ho| 1 & 9 2
ERGAS = 1007, | — > (RMSE*(n:)/(:)")

n,
€ =1

27)

where h is the resolution of the HRP image and 1 the res-
olution of the LRM, n. the number spectral bands consid-
ered in the fusion, and 7n; the mean radiance of each spec-
tral band involved in the fusion. The RMSE(n;) of each
merged band is defined as

RMSE(n,) = (28)

where NP is the total number of pixels in the original and
fused image, O; is the radiance value of pixel j in the ith
band of the original image, and I is the radiance value of
the pixel 7 in the sth band of the fused image.

The lower the value of the ERGAS index, the higher the spec-
tral quality of the merged image.

In Table I(A) and (B), we show the values of these indexes
resulting from the comparison of the merged images and the
original IKONOS LRM images.

In order to quantify the effect that the fusion has over the ini-
tial multispectral images (16 m/pixel, spatially degraded image),
we show in the first columns the values of the different pa-
rameters obtained when these degraded images were compared
with the original LRM images (4 m/pixel). Therefore, these first
columns reflect the situation before the fusion, while the last
columns reflect the situation that ideally should be reached after
the fusion.

Higher CC or lower ERGAS values than those showed in the
first columns indicate that the analyzed image fusion procedure
allows a high-quality transformation of the multispectral content
when increasing the spatial resolution.

It can be observed that the fusion method that results in im-
ages of the least spectral quality is the one based on the standard
FIHS transform.

The image fusion method proposed by Tu et al. allows ob-
taining HRM images with better spectral quality that the former
because the overlap between the SRF of the HRP and LRM sen-
sors is taken into account in the definition of the I component.
Even though the ERGAS values are lower after the fusion than
before, the color of both the Madrid and the Pamplona merged
images [Fig. 2(e) and 3(e)] is slightly greenish and differs from
that of the HRM image that would ideally be reached after the
fusion, i.e., the original IKONOS multispectral image [Fig. 2(c)
and 3(c)].
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TABLE 1
VALUE OF THE DIFFERENT PARAMETERS ANALYZED TO ESTIMATE
THE SPECTRAL QUALITY OF THE MERGED IMAGES.
A: IMAGE OF MADRID. B: IMAGE OF PAMPLONA

Initial eFIHS ¢FIHS eFIHSW eFIHS Ideal
A Tu atrous  SRF
Spectral X1 08543 09336 09304 09478 0.9459 1
correlation X2 0.8550 09601 0.9694 09757 0.9702 1
cgeéfﬁcient X3 08573 09591 09705 09734 0.9685 1
€6 X4 08144 09445 09566 0.9640 0.9583 1
cC 08452 09493 09567 0.9652 0.9607 1
ERGAS 4422 2747 2331 2149 2215 0

Initial eFIHS ¢FIHS eFIHSW eFIHS  Ideal
B Tu atrous SRF
S X1 08832 09242 09329 0.9550 0.9435 1
pectral
correlation X2 0.8707 09560 0.9678 09728 09701 1
cgefﬁcient X3 08626 09563 0.9708 0.9747 09724 1
€6 X4 08351 09525 09621 09648 09617 1
cc 08629 09472 09584 0.9668 0.9619 1
ERGAS 5433 3306 3145 2827 2935 0

This color distortion effect does not appear in the merged im-
ages obtained when applying the eFIHS SRF fusion method pro-
posed in this work. In this case, the information of the HRP and
LRM sensors has been used to spectrally adjust the HRP image
and obtain the I’ image, equivalent to the image that the LRM
sensor would acquire if it works at a spatial resolution similar
to that of the HRP. The values of the parameters needed to syn-
thesize this I’ image have been directly obtained from the SRF
of the HRP and LRM sensors, instead of having them estimated
experimentally. The difference between this I’ image and the 7
image obtained from the LRM image corresponds to spatial de-
tail information. A simple subtraction operation between these
images (I’ — I') allows extracting from the HRP image informa-
tion concerning to spatial detail only, without attached spectral
information.

The concept of the proposed fusion method is similar to
the basic concept of the wavelet-based image fusion methods,
that is, to extract from the HRP image the spatial detail that is
missing in the LRM one, to later inject it into the latter. Doing
it this way, the spectral quality of the merged eFIHS SRF
images [Figs. 2(g) and 3(g)] is quite similar, both visually and
quantitatively, to those obtained using wavelet-based image
fusion methods [Figs. 2(f) and 3(f)].

B. Spatial Quality of the Merged Images

A good fusion method must allow the addition of a high de-
gree of the spatial detail of the HRP image to the LRM image,
simultaneously preserving the spectral information of the LRM
image.

The spatial quality of the merged images will be evaluated
by comparing their information to that of the HRP image.
This comparison is performed visually and quantitatively using
the same parameters used to assess the spectral quality of the
merged images.
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Fig. 3.

TABLE 11
VALUE OF THE DIFFERENT PARAMETERS ANALYZED TO ESTIMATE
THE SPATIAL QUALITY OF THE MERGED IMAGES.
A: IMAGE OF MADRID. B: IMAGE OF PAMPLONA

Initial eFIHS ¢FIHS eFIHSW eFIHS  Ideal
A Tu atrous  SRF
. X1 08195 09751 09537 09557 0.9829 1
Spatial
correlation X2 08479 09936 09889 0.9800 0.9940 1
cogfﬁcient X3 08382 09819 09735 09670 0.9778 1
(sCC) X4 08387 09543 09692 09708 0.9832 1
sCC 08360 09762 09713 09683 0.9844 1
ERGASs 4508 1691 1857 1951 1365 0
Initial eFIHS eFIHS eFIHSW eFIHS  Ideal
B Tu atrous  SRF
Spatial X1 07575 09670 09381 09382 0.9731 1
correlation X2 0.7927 09751 09587 09405 0.9789 1
cogfﬁcient X3 0.7980 09686 09515 09591 0.9621 1
(sCC) X4 0.7625 09085 0.9068 09190 0.9454 1
sCC 07777 09548 09388 09392 0.9649 1
ERGASs 5782 2955 3059 3268 229 0

In order to minimize the difference in the radiometric values
between the HRP image and each band of the merged images,
these are modified to match the histogram of the HRP image
[22]. This histogram matching is done biasing and stretching the
histogram of each merged image to make its mean and standard
deviation equal to that of the HRP one.

Higher spatial CC (sCC) or lower spatial ERGAS (ERGASS)
values than those shown in the first columns of Table II(A) and
(B) indicate that most spatial detail information of the HRP im-
ages has been incorporated into the LRM ones during the fusion
process.

The addition of this spatial detail is evident in all the merged
images when these are visually compared to the initial LRM.

(a) Part of the initial IKONOS HRP image covering the city of Pamplona (degraded to 4 m). (b) Initial IKONOS LRM image (degraded to 16 m and
resampled to 4 m). (c) Original IKONOS LRM image (4 m). (d) Fused image using the eFIHS method proposed. (¢) Fused image using the method proposed by
Tu et al. (2.8 m). (f) Fused image using the eFIHS wavelet-based method. (g) Fused image using the eFIHS SRF method proposed in this paper.

Although there are no perceptible differences between the
spatial quality of the merged images when these are compared
visually (Figs. 2 and 3), the values of the sCC as well as the ER-
GASs are better for the merged images obtained applying the
eFIHS SRF method proposed in this paper. When this image
fusion method is used, the spatial detail information of the HRP
image missing in the LRM image is directly extracted, not being
necessary to apply any filtering process to the HRP image.

The superior performance of the eFIHS SRF method from
a spatial point of view is evident when the difference images
between the HRP and each merged band, with its histogram
matched to that of the HRP image, are visually compared. Fig. 4
shows the difference images corresponding to the green band of
each merged HRM image, biased for display purposes. In the
right part of the figure, we include the histogram of each merged
image. The narrower the histogram, the higher the similarity
between the HRP and the merged image.

Obviously, the radiometric information of both images is dif-
ferent and the difference image will never be a zero-mean and
zero-standard deviation image.

Although the numerical results are acceptable for the
eFIHSW image, the visual analysis of the difference image
[Fig. 4(d)] reveals that the amount of spatial detail of the HRP
image injected into the LRM one is oversized in some cases
(dark gray lines or edges) and undersized in others (light gray
lines or edges). This effect can also be noticed in the eFIHS
and the eFIHS Tu images, but with a much lower incidence.
A simple look to Fig. 4(e) reveals that there are no spatial
detail differences between the HRP and the eFTHS SRF images.
Consequently, it is possible to affirm that the whole detail
information of the HRP image has been incorporated into the
fused image when the eFIHS SRF method was used.

Taking into account that we have assessed both the spectral
and the spatial quality of the merged images using the same
index, it is possible to estimate the global quality of these images
by the average of the ERGAS and ERGASs values (Table III).
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Fig. 4. (a) Part of the difference image between the HRP and the GREEN
band of the initial image covering the city of Pamplona (degraded to 16 m and
resampled to 4 m). (b) Difference image between the HRP and the GREEN
band of the fused eFIHS image. (c) Difference image between the HRP and the
GREEN band of the fused eFIHS Tu image. (d) Difference image between the
HRP and the GREEN band of the fused eFIHW image. (e) Difference image
between the HRP and the GREEN band of the fused eFIHS SRF image.

The eFIHS SRF method proposed in this work provides
HRM images with higher global quality than the eFIHSW a
trous method, being lower than its computational cost, as will
be demonstrated in Section V-C.

C. Computational Cost of the Different IHS-Based Image
Fusion Methods

Here, the computational complexity of the proposed eFIHS
SRF fusion algorithm is discussed and compared to that of the
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TABLE 1III
AVERAGE ERGAS VALUE FOR THE DIFFERENT MERGED IMAGES.
A: IMAGE OF MADRID. B: IMAGE OF PAMPLONA
Initial eFIHS eFIHS eFIHSW ¢FIHS Ideal
A Tu  atrous SRF
Avcrage ERGAS 4465 2219 208 2050 1.790 0
Initial e¢FIHS ¢FIHS ¢FIHSW ¢FIHS  Ideal
B Tu atrous SRF
Average ERGAS 5607 3.130 3.102 3.047 2615 0

other THS-based fusion approaches used in this work to fuse
IKONOS images (a spatial resolution ratio of 4 : 1 is considered
since it is a common ratio on usual image fusion tasks).

In order to carry out this analysis, we will compute the
number of operations involved in each algorithm. Considering
that the difference between these algorithms lies in the way the
6 image is calculated, we will focus this analysis just on this
part of the image fusion algorithms.

Let N be the number of columns and rows of the images to be
merged and F' x F' the size of the filter used to obtain the wavelet
coefficients when the eFIHSW a trous method is applied.

According to (24), the number of operations needed to obtain
the 6 image when the eFIHS method is used is

eFIHS, . = 5+ N2 (29)

According to (25), the number of operations needed to obtain
the 6 image when the eFIHS Tu method is used is

eFIHS Tu,p = 7 N2 (30)

When the eFIHSW method is applied, the following differ-
ences are computed to obtain the wavelet coefficient images

Wyrp: WHRP-
wypp = HRP — HRPrr(L1) (€1))
eFIHS Tu,ps = 7 N? (32)

where HRP pry,(z1) is the HRP image filtered with an F' x F’
convolution mask, and HRPfyy 12y is the HRPpyr (z1) filtered
with the same convolution mask. The value of each pixel on this
HRPpyy,(12) image is calculated applying the convolution mask
coefficients over just one out of two neighboring pixels, both
in the row and column directions. The number of operations
required to obtain the 6 image in this case is

eFTHSW,,. = (3 + 2F?) - N2. (33)

As mentioned before, we have used a B-cubic spline function
to perform the “4 trous” wavelet decomposition. This function
leads to a convolution mask of 5 x 5, consequently being F' = 5.

All the fusion methods mentioned above are directly applied
to digital counts (DC) images. To apply the image fusion algo-
rithm proposed in this work (eFIHS SRF) it is necessary to con-
vert DC to radiance values (HRP to ngrp, Btong, Gtong, R
to ng, and NIR to nnr). Obviously, these conversions have a
computational cost that has not been considered in this analysis
because they are not directly involved in the fusion process. Ac-
cording to (23), the number of operations needed to obtain the §
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Fig. 5. Relative computational cost of the image fusion algorithms analyzed

in this work.

image following the eFIHS SRF method proposed in this work
is
eFIHS SRF,,s = 6 - N?. (34)
Fig. 5 shows how the number of operations required to com-
pute the § image increases when the size or the number of pixels
(N?2) of the HRP and LRM images to be fused increase.

The eFIHSW method is the most expensive, being the com-
putational cost of the other three methods very similar.

VI. CONCLUSION

The image fusion approach presented in this work, uses the
information in the SRF of the IKONOS HRP and LRM sensors
to obtain a fast approximation to the I’ image that the LRM
sensor would acquire if it worked at a spatial resolution sim-
ilar to that of the HRP sensor. This I’ image contains the spatial
detail information of the HRP image not present in the LRM
one. The injection of this spatial detail into the LRM image is
done using a fast IHS transform. The HRM images obtained
using this method present similar spectral quality and higher
spatial quality than the images obtained using the wavelet-based
image fusion methods used in this work, being the computa-
tional cost of this method lower than that of the used wavelet-
based method.
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