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Summary. The structure tensor, also known as second moment matrix or Förstner
interest operator, is a very popular tool in image processing. Its purpose is the
estimation of orientation and the local analysis of structure in general. It is based
on the integration of data from a local neighborhood. Normally, this neighborhood is
defined by a Gaussian window function and the structure tensor is computed by the
weighted sum within this window. Some recently proposed methods, however, adapt
the computation of the structure tensor to the image data. There are several ways
how to do that. This chapter wants to give an overview of the different approaches,
whereas the focus lies on the methods based on robust statistics and nonlinear
diffusion. Furthermore, the data-adaptive structure tensors are evaluated in some
applications. Here the main focus lies on optic flow estimation, but also texture
analysis and corner detection are considered.

2.1 Introduction

Orientation estimation and local structure analysis are tasks that can be found
in many image processing and early vision applications, e.g. in fingerprint
analysis, texture analysis, optic flow estimation, and in geo-physical analysis
of soil layers. The classical technique to estimate orientation is to look at the
set of luminance gradient vectors in a local neighborhood. This leads to a very
popular operator for orientation estimation, the matrix field of the so-called
structure tensor [4, 10, 16, 20, 38].
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The concept of the structure tensor is a consequence of the fact that one
can only describe the local structure at a point by considering also the data
of its neighborhood. For instance, from the gradient at a single position, it
is not possible to distinguish a corner from an edge, while the integration
of the gradient information in the neighborhood of the pixel gives evidence
about whether the pixel is occupied by an edge or a corner. Further on, the
consideration of a local neighborhood becomes even more important as soon
as the data is corrupted by noise or other disturbing artifacts, so that the
structure has to be estimated before the background of unreliable data.

The structure tensor therefore extends the structure information of each
pixel, which is described in a first order approximation by the gradient at
that pixel, by the structure information of its surroundings weighted with a
Gaussian window function. This comes down to the convolution of the struc-
ture data with a Gaussian kernel, i.e. Gaussian smoothing.

Note however, that the smoothing of gradients can lead to cancellation
effects. Consider, for example, a thin line. At one side of the line there appears
a positive gradient, while at the other side the gradient is negative. Smoothing
the gradients will cause them to mutually cancel out. This is the reason why
in the structure tensor, the gradient is considered in form of its outer product.
The outer product turns the gradient vector∇I of an image I into a symmetric
positive semi-definite matrix, which we will refer to as the initial matrix field

J0JJ := ∇I∇I� =
(

I2
xI IxII IyII

IxII IyII I2
yII

)
. (2.1)

Subscripts thereby denote partial derivatives. The structure tensor can be
easily generalized from scalar-valued data to vector-valued data. As with the
matrix representation it is possible to sum up gradient information, the struc-
ture information from all channels of a vector-valued image I = (I1, . . . , INI )
can be integrated by taking the sum of all matrices [8]:

J0JJ :=
N∑

i=1

∇IiII ∇I�iII . (2.2)

The structure tensor for a certain neighborhood of scale ρ is then computed
by convolution of the components of J0JJ with a Gaussian kernel KρK :

JρJ = KρK ∗ J0JJ . (2.3)

The smoothing, i.e. the integration of neighborhood information, has two pos-
itive effects on orientation estimation. Firstly, it makes the structure tensor
robust against noise or other artifacts, and therefore allows a more reliable
estimation of orientation in real-world data. Secondly, it distributes the in-
formation about the orientation into the areas between edges. This is a very
important effect, as it allows to estimate the dominant orientation also at
those points in the image where the gradient is close to zero. The dominant
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orientation can be obtained from the structure tensor as the eigenvector to
the largest eigenvalue. An operator which is closely related to the structure
tensor is the boundary tensor discussed in Chap. 4 by Köthe.¨

There are many applications for the structure tensor in the field of image
processing. One popular application is optic flow estimation based on the local
approach of Lucas and Kanade [21]. In optic flow estimation one searches for
the spatio-temporal direction with least change in the image, which is the
eigenvector to the smallest eigenvalue of the structure tensor [4, 15].

Another application for orientation estimation is texture analysis. Here
the dominant orientation extracted from the structure tensor can serve as
a feature to discriminate textures [4, 28]. The dominant local orientation is
also used in order to drive anisotropic diffusion processes, which enhance the
coherence of structures [39]. Often the structure tensor is also used as a feature
detector for edges or corners [10]. An application apart from image processing
is a structure analysis for grid optimization in the scope of fluid dynamics
[34].

Although the classic structure tensor has proven its value in all these ap-
plications, it also holds a drawback. This becomes apparent as soon as the
orientation in the local neighborhood is not homogeneous like near the bound-
ary of two different textures or two differently moving objects. In these areas,
the local neighborhood induced by the Gaussian kernel integrates ambiguous
structure information that actually does not belong together and therefore
leads to inaccurate estimations.

There are two alternatives to remedy this problem. One is to adapt the
neighborhood to the data. A classical way of doing so is the Kuwahara-Nagao
operator [2, 18, 25]. At a certain position in an image this operator searches
for a nearby neighborhood where the response (the orientation) is more ho-
mogeneous than it is at the border. That response is then used at the point
of interest. In this way the neighborhoods are not allowed to cross the bor-
ders of the differently oriented regions. In [36] it was shown that the classic
Kuwahara-Nagao operator can be interpreted as a ‘macroscopic’ version of a
PDE image evolution that combines linear diffusion (smoothing) with mor-
phological sharpening (a shock filter in PDE terms). A very similar approach
is to use adaptive Gaussian windows [23, 26] for choosing the local neighbor-
hood. Also by nonlinear diffusion one can perform data-adaptive smoothing
that avoids the integration of ambiguous data [7, 41].

A second possibility to enhance local orientation estimation is to keep the
non-adaptive window, but to clearly choose one of the ambiguous orientations
by means of robust statistics [37]. This chapter will describe both approaches
and will show their performance in the most common applications also in
comparison to the conventional structure tensor. Note that for a data-adaptive
structure tensor to reveal any advantages, discontinuities or mixed data must
play a role for the application. Some applications where this is the case are
optic flow estimation, texture discrimination, and corner detection.
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Chapter organization. The chapter is organized as follows. In the next
section we give an overview on data-adaptive structure tensors. The ap-
proaches using robust statistics and nonlinear diffusion are described in detail
and relations between methods are examined. In Sect. 2.3 – Sect. 2.5 the
structure tensor is applied to optic flow estimation, texture analysis, and cor-
ner detection. Some experiments show the superiority of adaptive structure
tensors in comparison to the classic structure tensor and differences between
the methods. The chapter is concluded by a brief summary in Sect. 2.6.

2.2 Data-adaptive Structure Tensors

An early approach to data-adaptive structure tensors is the gray value local
structure tensor of Nagel and Gehrke [26], which has been designed for its
use in spatio-temporal optic flow estimation. Instead of using a fixed isotropic
Gaussian kernel KρK for smoothing the structure tensor, a space-dependent
Gaussian

G(x) =
1√

(2π)3|Σ(x)|
e−

1
2 x�Σ(x)−1x (2.4)

is employed, which is parameterized by the covariance matrix Σ(x). This
covariance matrix is locally adapted to the image by setting

Σ(x) = U(x)⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
σmin + σ2

max

1+σ2
maxλ1(x) 0 0

0 σmin + σ2
max

1+σ2
maxλ2(x) 0

0 0 σmin + σ2
max

1+σ2
maxλ3(x)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟U�(x)

(2.5)

where λi(x), i ∈ {1, 2, 3} are the eigenvalues of the resulting structure tensor
and U holds its eigenvectors. Initially, Σ(x) is set to an arbitrary diagonal
matrix. The parameters σmin and σmax are for restricting the anisotropy and
the size of the Gaussian. This concept of using a data-adaptive Gaussian for
the convolution with the structure tensor has been further investigated in the
works of Middendorf and Nagel [22, 23]. See also Chap. 3 by Nagel for the
estimation of an adaptive Gaussian.

Another data-adaptive structure tensor has been proposed by Kothe [17]¨
for the purpose of corner detection. For corner detection one uses the fact
that the coherence of the orientation measured by the structure tensor be-
comes small when two edges meet. To achieve an accurate localization of
these points, it is favorable to smooth the structure tensor mainly along edges
in the image. Köthe has therefore proposed to use an hourglass-shaped filter¨
for the convolution with the structure tensor. The orientation of the filter
is thereby adapted to the orientation of the edges, so it is a data-adaptive
smoothing.
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Note that though the two previous structure tensors are data-adaptive,
they are still linear operators, as they imply a convolution operation (which is
linear) based on the initial image data. The adaptation quality can be further
improved by nonlinear operators, which use the updated data in a kind of
feedback loop for the adaptation. Two such nonlinear operators have been
proposed for the structure tensor, firstly the concept based on robust statistics
by van den Boomgaard and van de Weijer [37], and secondly the techniques
based on nonlinear diffusion, proposed by Weickert and Brox [7, 41]. These
methods will now be explained in more detail.

2.2.1 Structure Tensors Based on Robust Statistics

Before describing data-adaptive structure tensors based on robust statistics
it will be shown that the classic structure tensor is the result of least squares
estimation procedures for local orientation. For illustration consider also the
texture in Fig. 2.1(a). The histogram of the gradient vectors in this texture
patch is shown in Fig. 2.1(b). Let v be the true orientation vector of the
patch, i.e. the vector perpendicular to the stripes. In an ideal image patch
every gradient vector should be parallel to the orientation v. In practice they
will not be parallel. The error of a gradient vector g(y) := ∇I(y) observed in
a point y with respect to the orientation v(x) of an image patch centered at
location x is defined as:

e(x,y) = ‖g(y)− (g(y)�v(x))v(x)‖

The difference g(y) − (g(y)�v(x))v(x) is the projection of g on the normal
to v. The error e(x,y) thus measures the perpendicular distance from the
gradient vector g(y) to the orientation vector v(x). Integrating the squared
error over all positions y using a soft Gaussian aperture for the neighborhood
definition we define the total error:

ε(x) =
∫

Ω

∫∫
e2(x,y)KρK (x− y)dy (2.6)

The error measure can be rewritten as

ε =
∫

Ω

∫∫
g�gKρK dy −

∫
Ω

∫∫
v�(gg�)vKρK dy .

where we have omitted the arguments of the functions. Minimizing the error
thus is equivalent with maximizing∫

Ω

∫∫
v�(gg�)vKρK dy ,

subject to the constraint that v�v = 1. Note that v is not dependent on y so
that we have to maximize:
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Fig. 2.1. Histograms of gradient vector space. In (a) an image (64 × 64) is shown
with in (b) the histogram of all gradient vectors (where darker shades indicate that
those gradient vectors occur more often in the image. In (c) a composition of two
differently oriented patterns is shown with the corresponding histogram in (d)

v�
(∫

Ω

∫∫
(gg�)KρK dy

)
v = v�JρJ v

where JρJ is the structure tensor.
Using the method of Lagrange multipliers to maximize v�JρJ v subject to

the constraint that v�v = 1, we need to find an extremum of

λ(1− v�v) + v�JρJ v .

Differentiating with respect to v (remember that d
dv (v�Av) = 2Av in case

A = A�) and setting the derivative equal to zero results in:

JρJ v = λv . (2.7)

The ‘best’ orientation thus is an eigenvector of the structure tensor JρJ . Sub-
stitution in the quadratic form then shows that we need the eigenvector cor-
responding to the largest eigenvalue.
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The least squares orientation estimation works well in case all gradients in
the set of vectors in an image neighborhood all belong to the same oriented
pattern. In case the image patch shows two oriented patterns the least squares
estimate will mix the two orientations and give a wrong result.

A robust estimator is constructed by introducing the Gaussian error norm:

ψ(e) = 1− exp
(

e2

2m2

)
as depicted in Fig. 2.2. In a robust estimator large deviations from the model
(what is considered ‘large’ is determined by the value of m) are not taken into
account very heavily. In our application large deviations from the model are
probably due to the mixing of two different linear textures (see Fig. 2.1(c-d)).

The error, (2.6), can now be rewritten as (we will omit the spatial argu-
ments):

ε =
∫

Ω

∫∫
ψ

(√
g�g − v�(gg�)v

)
KρK dy .

Again we use a Lagrange multiplier method to minimize the error subject
to the constraint that v�v = 1:

d

dv

(
λ(1− v�v) +

∫
Ω

∫∫
ψ

(√
g�g − v�(gg�)v

)
KρK dy

)
= 0 .

This leads to
Jm

ρJ (v)v = λv (2.8)

where

Jm
ρJ (v) =

∫
Ω

∫∫
gg�KmKK (g�g − v�(gg�)v)KρK dy (2.9)
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Fig. 2.2. Quadratic versus (robust) Gaussian error norm. The Gaussian error norm
is of ‘scale’ m = 0.7
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with KmKK (e2) = exp
(
e2/2m2

)
. The big difference with the least squares esti-

mator is that now the matrix Jm
ρJ (v) is dependent on v (and on x as well).

Note that Jm
ρJ (v) can be called a ‘robustified’ structure tensor in which the

contribution of each gradient vector is weighted not only by its distance to the
center point of the neighborhood, but also weighted according to its ‘distance’
to the orientation model.

Note that the ‘robustification’ of the structure tensor is dependent on
the model that is fitted to the data, so there is no unique robust structure
tensor. The structure tensor is a local averaging of the gradient product gg�,
but whereas in the classical case each point in the neighborhood contributes
in an equal amount to this average, in the robust formulation the weight is
dependent on the plausibility of the gradient observation g given the model.

A fixed point iteration scheme is used to find a solution. Let vi be the
orientation vector estimate after i iterations. The estimate is then updated
as the eigenvector vi+1 of the matrix Jm

ρJ (vi) corresponding to the largest
eigenvalue, i.e. one solves:

Jm
ρJ (vi)vi+1 = λvi+1

The proposed scheme is a generalization of the well-known fixed point scheme
(also called functional iteration) to find a solution of the equation v = F (v).

Note that the iterative scheme does not necessarily lead to the global min-
imum of the error. In fact one is often not even interested in that global
minimum. Consider for instance the situation of a point in region A (with ori-
entation α) that is surrounded by many points in region B (with orientation
β). It is not too difficult to imagine a situation where the points of region B
outnumber those in region A. Nevertheless the algorithm is to find the ori-
entation α whereas the global minimum would correspond with orientation
β. Because the algorithm starts in the initial orientation estimate and then
finds the local minimum nearest to the starting point it hopefully ends up in
the desired local minimum: orientation α. The choice for an initial estimate of
the orientation vector is thus crucial in a robust estimator in case the image
patch shows two (or more) orientations.

2.2.2 Structure Tensors Based on Nonlinear Diffusion

In the preceding subsection it has been shown that a least squares estimate
of the local orientation comes down to solving an eigenvalue problem of the
structure tensor smoothed with the Gaussian kernel KρK which determines
the local neighborhood. We have also seen a more general technique than
least squares that introduces an additional weighting dependent on the data.
Now the question may arise if there is on the other hand also a more general
smoothing approach than Gaussian convolution, and indeed there is one.
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The generalization of Gaussian smoothing, which is equivalent to diffusion
with a constant diffusivity, is nonlinear diffusion. In contrast to Gaussian con-
volution, nonlinear diffusion reduces the amount of smoothing in the presence
of discontinuities in the data, so it is a data-adaptive smoothing method. Be-
ing a nonlinear approach, discontinuities are determined iteratively in the up-
dated, smoothed data and therefore one can integrate data from an arbitrarily
shaped neighborhood, as illustrated in Fig. 2.3. Thus nonlinear diffusion seems
very appropriate to replace the Gaussian convolution of the classic structure
tensor in order to bring in data-adaptive neighborhoods for the integration.

Nonlinear diffusion has been introduced by Perona and Malik [27]. With
the initial condition u(t = 0) = I, the PDE

∂t∂∂ u = div
(
g(|∇u|2)∇u

)
(2.10)

evolves a scalar-valued data set, such as a gray value image, where I is the
initial image. The so-called diffusivity function g correlates the amount of
smoothing to the gradient magnitude and thereby prevents smoothing across
edges. For smoothing the structure tensor, a good choice for this diffusivity
function is

g(|∇u|) =
1√

|∇u|2 + ε2
(2.11)

where ε is a small positive constant only introduced in order to prevent unlim-
ited diffusivities. Diffusion with this diffusivity is called total variation (TV)
flow [1], which is the diffusion filter corresponding to TV regularization [32].

Since the structure tensor is not a scalar-valued but a matrix-valued data
set, one needs an extension of (2.10) to matrix-valued data. Such an extension
has been provided in [35]:

∂t∂∂ uij = div

(
g

(
N∑

k,l=1

|∇ukl|2
)
∇uij

)
i, j = 1, . . . , N . (2.12)

Details can also be found in Chap. 25 by Weickert et al. When setting the
initial condition to uij(t = 0) = J0JJ ,ij (cf. (2.1) and (2.2)), this PDE provides
the nonlinear structure tensor JtJJ for some diffusion time t. Here, N is the

Fig. 2.3. Illustration of how the local neighborhood is adapted by an increasing
amount of nonlinear diffusion
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number of rows/columns of the structure tensor (which is symmetric), i.e.
N = 2 for the spatial structure tensor and N = 3 for its spatio-temporal
version. Note that all matrix channels are coupled in this scheme. They are
smoothed with a joint diffusivity taking into account the edges of all channels.
Consequently, a discontinuity in one matrix channel inhibits also smoothing
in the others.

There exists also an anisotropic counterpart to this scheme, which has been
introduced in [7, 41]. In the anisotropic case not only the amount of diffusion
is adapted locally to the data but also the direction of smoothing. This has
positive effects for instance in the application of corner detection where one
is interested in smoothing mainly along edges in the image.

∂t∂∂ uij = div

(
D

(
N∑

k,l=1

∇ukl∇u�
kl

)
∇uij

)
i, j = 1, . . . , N (2.13)

The matrix D is the so-called diffusion tensor that replaces the scalar-valued
diffusivity g and which we define in the spatial case, where N = 2, as

D = U

(
g(λ1) 0

0 1

)
U� (2.14)

The diffusivity function g is the same as in the isotropic setting and λ1 de-
notes the larger eigenvalue of the matrix

∑N
i,j=1∇uij∇u�

ij while U holds its
eigenvectors. Simply speaking, the diffusion tensor reduces the amount of
smoothing in gradient direction depending on the gradient magnitude, while
it employs the full amount of smoothing in the direction perpendicular to the
gradient. For detailed information about anisotropic diffusion in general, we
refer to [38]. Anisotropic nonlinear matrix diffusion is also a topic of Chap. 25
by Weickert et al.

By applying a Gaussian convolution with a kernel KρK to the matrix∑N
k,l=1∇ukl∇u�

kl that determines the diffusion tensor D, one can even em-
phasize the smoothing along discontinuities in the data [40]. With such a
nonlinear diffusion process, one obtains the anisotropic structure tensor Jt,ρJJ .

2.2.3 Relations

After the description of these approaches to data-adaptive structure tensors,
one might wonder how they are related. Are they basically all the same, or
are there significant differences?

Let us first consider the gray value local structure tensor of Nagel and
Gehrke and the nonlinear structure tensor based on diffusion. Both methods
perform a smoothing operation on the structure tensor, using a neighbor-
hood that is adapted to the data, so one would expect that both methods
do approximately the same. However, despite the similarities, there are some
significant differences.
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Fig. 2.4. Left: Neighborhood of a non-adaptive isotropic Gaussian Center: Neigh-
borhood of a data-adaptive anisotropic Gaussian. Right: Neighborhood obtained
with an iterative diffusion process

Figure 2.4 visualizes these differences between the approach of Nagel and
Gehrke and the classic as well as the nonlinear structure tensor. The classic
structure tensor uses a fixed isotropic Gaussian kernel for smoothing the data,
thus it is not data-adaptive at all. The method proposed by Nagel and Gehrke
parameterizes the neighborhood by an anisotropic Gaussian and adapts the
parameters locally to the data. Although this approach is more precise than
the classic structure tensor, one can see that in many situations the Gaussian
cannot fully cover the region of interest without also integrating ambiguous
information. The iterative diffusion process involved in the nonlinear structure
tensor is more flexible and can therefore cover a neighborhood with arbitrary
shape.

Furthermore, the nonlinear structure tensor is based on a nonlinear
smoothing operation, i.e. the operation works on the updated data, while the
method of Nagel and Gehrke is still a linear operation as it smooths the initial
data.

The robust structure tensor described in Sect. 2.2.1 is also based on a
nonlinear process, so let us consider its relations to the nonlinear structure
tensor. From (2.9) one can see that dependent on how well the values fit to the
currently estimated orientation, their influence is decreased. This is similar to
the concept of the nonlinear structure tensor, where the further expansion
of the local neighborhood is reduced if the new values do not fit well to the
values of the current neighborhood. Note that the weighting function ψ′(s2) in
(2.9) is one of the diffusivity functions used by Perona and Malik when they
introduced nonlinear diffusion (cf. [27]). Thus both the nonlinear structure
tensor and the robust structure tensor make the integration of further data
dependent on whether it fits to the already gathered data. One can even
choose the same weighting function for this selection process.

The difference between both approaches is that the nonlinear structure
tensor applies this selection process in order to determine the local neighbor-
hood and then uses a simple least squares approach within this neighborhood,
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while the structure tensor based on robust statistics first gathers the data from
the simple fixed Gaussian neighborhood KρK and applies the nonlinear weight-
ing process afterwards. Thus the nonlinear structure tensor assumes that the
values needed for a good estimation are connected, whereas the robust statis-
tics ignore the aspect of connectivity. Consequently, it can be expected that
in situations where the assumption of connected data holds, the nonlinear
structure tensor is better suited, while in situations where the assumption is
false, robust statistics should be advantageous.

Relations between robust statistics, nonlinear diffusion, and other data-
adaptive smoothing approaches are also dealt with in [24].

2.3 Optic Flow Estimation

A well-known application of the structure tensor is optic flow estimation. In
optic flow estimation one searches for the displacement field (u(x, y), v(x, y))
that says for each pixel (x, y) of one image I(x, y, t) to which position it has
moved in a second image I(x, y, t + 1).

In Bigun et al. [4] optic flow estimation has been regarded as the search for¨
the spatio-temporal orientation where there is the least change in the image
sequence. This immediately leads to an orientation estimation problem that
can be solved by computing the eigenvector w = (w1, w2, w3) to the smallest
eigenvalue of the structure tensor. The optic flow vector can then be computed
by normalizing the last component of w to 1, which leads to u = w1/w2 and
v = w2/w3.

Although this has been the first explicit usage of the structure tensor for
optic flow estimation, the structure tensor is also implicitly present in the
early method of Lucas and Kanade [21]. In this method the assumptions of
the optic flow estimation problem become more explicit. Furthermore, the
method of Lucas-Kanade is an ordinary least squares approach, while the
method of Bigün estimates the flow vector by means of total least squares.¨
For optic flow estimation in practice, it turns out that a simple least squares
approach is more robust, so we will stick here to the method of Lucas-Kanade.

2.3.1 Lucas-Kanade with the Conventional Structure Tensor

The assumption that is most frequently used in optic flow estimation is the
assumption that the displacement of pixels does not alter their gray values.
This can be expressed by the well-known optic flow constraint (OFC) [14]

IxII u + IyII v + IzI = 0 . (2.15)

The optic flow is not uniquely determined by this constraint, since this is
only one equation for two flow components. This is also called the aperture
problem. In order to obtain a unique solution, Lucas and Kanade proposed to
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assume the optic flow vector to be constant within some neighborhood, e.g. a
Gaussian window KρK .

With this second assumption, it is possible to estimate the optic flow at
each point by the minimizer of the local energy function

E(u, v) =
1
2
KρK ∗

(
(IxII u + IyII v + IzI )2

)
. (2.16)

A minimum (u, v) of E must satisfy ∂u∂∂ E = 0 and ∂v∂∂ E = 0, what leads to the
2× 2 linear system(

KρK ∗ I2
xI KρK ∗ IxII IyII

KρK ∗ IxII IyII KρK ∗ I2
yII

)(
u
v

)
=
(
−KρK ∗ IxII IzI
−KρK ∗ IyII IzI

)
. (2.17)

Note that it is possible to use instead of a purely spatial neighborhood also
a spatio-temporal neighborhood where the assumption of constant flow is ex-
tended to hold also over time. Since the spatio-temporal version has access to
more data, it leads in general to more accurate results. However, for simplicity
we considered only spatial neighborhoods in the experiments.

2.3.2 Lucas-Kanade with the Nonlinear Structure Tensor

One can easily observe that the entries of this linear system are five of the six
different components of the spatio-temporal structure tensor

JρJ = KρK ∗
(
∇I∇I�

)
= KρK ∗

⎛⎝⎛⎛ I2
xI IxII IyII IxII IzI

IxII IyII I2
yII IyII IzI

IxII IzI IyII IzI I2
zI

⎞⎠⎞⎞ . (2.18)

Thus it is possible to replace these entries by the components of one of the
data-adaptive structure tensors. Such a replacement means that the fixed
neighborhood of the original method is replaced by an adaptive neighborhood
which prefers those pixels that fit the assumption of constant optic flow.

As already discussed in Sect. 2.2, one can obtain a good adaptation of
the neighborhood by nonlinear diffusion. Thus with the nonlinear structure
tensor [7, 41] described in Sect. 2.2.2 and determined by the nonlinear diffusion
process given by (2.12), the assumption of constant flow holds much more often
than in the case of the conventional structure tensor. Consequently, there are
less estimation errors, in particular near motion boundaries.

2.3.3 Robust Structure Tensor for Optic Flow Estimation

Compared to Sect. 2.2.1, with optic flow estimation the orientation estimation
task has changed a bit. We now search for the orientation with least change in
a spatio-temporal space. Since the robustified structure tensor selects the data
according to how well it fits to the model, a new robust structure tensor has
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to be derived due to the change of the model. In order to see the relations to
the derivation in Sect. 2.2.1 we adapt to the same notation and write g = ∇I.
The optic flow vector (u, v) will be written as the estimated orientation v.
Further on, the Lucas-Kanade approach will be interpreted as a least squares
estimation procedure first, before the generalized robust estimation procedure
is described.

Least squares estimation. As stated above, the optic flow constraint (2.15)
has two unknowns: the two components of the optic flow vector v, and a way to
get an expression for a unique solution for v is to come up with more equations
each describing the same vector v. This is achieved with the assumption of
Lucas-Kanade that within a local neighborhood of a point x the optical flow
vector is constant. Like in Sect. 2.2.1 a Gaussian aperture is selected to define
the local neighborhood. Let v(x) be the optical flow vector at x then the error
towards the optic flow constraint is given as:

ε(x) =
∫

Ω

∫∫
(IzI (y) + v(x) · g(y))2 KρK (x− y)dy (2.19)

If we now select the vector v∗ that minimizes the above expression then the
OFC expression IzI + v · g is minimized on average in the local neighborhood
of a point x:

v∗ = argminvε(x)

The optimal value is found by solving for dvε = 0:

dvε = 2
∫

Ω

∫∫ (
IzI (y) + v(x) · g(y)

)
g(y)KρK (x− y)dy

Here we use the convention used throughout this chapter that the integration
of a matrix/vector equation is to be done for each of the matrix/vector com-
ponents individually. Consider the term (v · g)g, where we have omitted the
spatial arguments for clarity. This can be rewritten as (gg�)v. Note that gg�

is a 2 × 2 matrix which, when integrated over a spatial neighborhood, is the
structure tensor J(x). Using this we can rewrite the above equation as:(∫

Ω

∫∫
g(y)g�(y) KρK (x− y)dy

)
v(x) = −

∫
Ω

∫∫
IzI (y)g(y)KρK (x− y)dy (2.20)

or
J(x)v(x) = −

∫
Ω

∫∫
IzI (y)g(y)KρK (x− y)dy

After integration the structure tensor can be assumed to be non-singular and
thus:

v(x) = −J−1(x)
∫

Ω

∫∫
IzI (y)g(y)KρK (x− y)dy

This is the well-known linear least squares estimator of the optical flow vector.
Like many local structure calculations it suffers from the fact that all points
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in the neighborhood are used in the calculation. At motion boundaries the
above expression is known to give the wrong answers.

Robust estimation. Robustifying optical flow calculations can be found e.g.
in [5]. Here we emphasize that a robust estimator of the optical flow vector
nicely fits into the framework for robust local structure calculations as set up
in this chapter.

The squared error of (2.19) is replaced with a robust error measure:

ε(x) =
∫

Ω

∫∫
ψ (IzI (y) + v(x) · g(y))KρK (x− y)dy (2.21)

leading to the following expression for the derivative dvε:

dvε =
∫

Ω

∫∫
ψ′(IzI (y) + v(x)g(y)

)
g(y)KρK (x− y)dy

Like in Sect. 2.2.1 we select the Gaussian error norm for ψ, leading to:

dvε =
∫

Ω

∫∫
IzI (y) + v(x) · g(y)

m2
exp

(
− (IzI (y) + v(x) · g(y))2

2m2

)
g(y)KρK (x−y)dy

This can be rewritten as:

dvε =
∫

Ω

∫∫ (
IzI (y) + v(x) · g(y)

)
g(y)KmKK (IzI (y) + v(x) · g(y))KρK (x− y)dy

Solving for dvε = 0 we obtain:(∫
Ω

∫∫
g(y)g(y)�KmKK (. . . )KρK (x− y)dy

)
v

= −
∫

Ω

∫∫
IzI (y)g(y)KmKK (. . . )KρK (x− y)dy

Compared with the linear least squares estimator, a new term KmKK (. . . ) has
been added that can be interpreted as the model error penalty. This equation
is the ‘robustified’ equivalent of 2.20.

Again we obtain a ‘robustified’ structure tensor. Carefully note that the
model error penalty term is different from the one we have derived in a pre-
vious section where we looked for the local orientation of maximum change in
a purely spatial neighborhood. Here we arrive at the equation

Jm
ρJ (v)v = l(v)

where

Jm
ρJ (v) =

∫
Ω

∫∫
g(y)g(y)�KmKK (IzI (y) + v(x) · g(y))KρK (x− y)dy
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and
l(v) = −

∫
Ω

∫∫
IzI (y)g(y)KmKK (. . . )KρK (x− y)dy .

And again we can solve this through a fixed point procedure:

vi+1 = −
(
Jm

ρJ
)−1 (vi)l(vi)

with v0 some initial estimate of the optical flow vector (the linear least squares
estimate is an obvious choice for this).

2.3.4 Adapting the Neighborhood with a Coherence Measure

As stated above, the assumption of constant flow field over a neighborhood is
used in order to disambiguate the optic flow constraint equation. This leads
to the idea that diffusion should be reduced at those areas where the aperture
problem is already reasonably solved [19]. In regions with non-constant smooth
motion fields, this will avoid oversmoothing the tensor field and then preserve
small motion differences. The aperture problem is solved as soon as the two
larger eigenvalues of the structure tensor are large enough compared to the
smallest one, i.e. that the ellipsoid associated to the tensor is flat. In order
to quantify the flatness of a tensor, we use a slightly changed version of the
coherence or corner measure proposed in [13]:

cm(J) =
(

λ1 − λ3

λ1 + λ3 + ε

)2

−
(

λ1 − λ2

λ1 + λ2 + ε

)2

(2.22)

where λ1 ≥ λ2 ≥ λ3 ≥ 0 are the eigenvalues of the structure tensor J and ε is
a small positive constant for regularization purposes. If λ2 ≈ λ3, this measure
yields a value close to 0, while if λ1 ≈ λ2 > λ3, the value is close to 1. This
measure can be use to steer the diffusion of the structure tensor through a
matrix-valued nonlinear diffusion scheme, written in a continuous formulation
as

∂t∂∂ JijJJ = div (g(cm)∇JijJJ ) (2.23)

where g is decreasing, g(0) = 1, g(1) = 0. Note that the continuous formulation
is problematic if g is not smooth. However, an associated discrete scheme will
be generally well defined. It can be written as

Jn+1
sJ = Jn

sJ + τ
∑

r∈N(s)

βrg (cm(Jn
rJJ + Jn

sJ )) (Jn
rJJ − Jn

sJ ) (2.24)

where s = (i, j) denotes a image location (and not the tensor component),
N(s) a discrete neighborhood, τ an evolution step and the βr are positive val-
ues that depend on the neighborhood (but not on the tensors), with reflecting
boundary conditions. The diffusivity function used here
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Fig. 2.5. The diffusivity function g(cm)

g(cm) =

⎧⎨⎧⎧⎩⎨⎨
1 if cm < α− η
(α + η − cm)/2η if α− η ≤ cm < α− η
0 if cm ≥ α− η

(2.25)

is depicted in Fig. 2.5. The thresholds α and η have been set respectively to
0.9 and 0.1 in the experiments. This diffusion is an alteration of the linear
diffusion and possesses the same stability properties. It behaves well in pres-
ence of small structures with high curvatures, but has the same drawback
that the linear diffusion with respect to motion discontinuities. Indeed, as it
can be seen from the discrete formulation (2.24), if JsJ and JrJJ are neighboring
tensors with different orientations, their sum will become isotropic and their
coherence measure small, so a maximal diffusivity of 1 will be assigned in the
corresponding term of (2.24).

2.3.5 Comparison

Figures 2.6–2.8 shows three well-known test sequences for optic flow estima-
tion and the results obtained with the methods described above1. The vi-
sualization of both the orientation and the magnitude of the flow vector is
achieved by using color plots where the hue is determined by the orientation
and the intensity corresponds to the magnitude of the flow vector.

1 The Yosemite sequence with clouds was created by Lynn Quam and is avail-
able at ftp://ftp.csd.uwo.ca/pub/vision. The version without clouds is avail-
able at http://www.cs.brown.edu/people/black/images.html. The original,
uncropped, street sequence has been published in [11] and is available at
http://www.cs.otago.ac.nz/research/vision.
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Fig. 2.6. Yosemite sequence (316 × 252 × 15). From Left to Right, Top to Bottom:
(a) Frame 8. (b) Ground truth. (c) Classic structure tensor. (d) Nonlinear structure
tensor. (e) Robust structure tensor. (f) Coherence based smoothing. See colour platesf

In all sequences, one can see a clear qualitative difference between the
Lucas-Kanade method based on the classical structure tensor and the methods
based on its data-adaptive versions. While the classic structure tensor causes
blurring artifacts at motion discontinuities, leading to bad estimates in these
areas, the data-adaptive structure tensors avoid mixing the data from the
different regions and therefore yield much more accurate results.

For the test sequences used here, there is also the ground truth available,
so it becomes possible to compare the methods by a quantitative measure. The
standard measure used in the literature is the average angular error (AAE)
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Fig. 2.7. Yosemite sequence without clouds (316×252×15). From Left to Right, Top
to Bottom: (a) Frame 8. (b) Ground truth. (c) Classic structure tensor. (d) Nonlinear
structure tensor. (e) Robust structure tensor. (f) Coherence based smoothing. Seeff
colour plates

introduced in [3]. Given the estimated flow field (ue, ve) and ground truth
(uc, vc), the AAE is defined as

aae =
1
N

N∑
i=1

arccos

(
uciuei + vcivei + 1√

(u2
ci + v2

ci + 1)(u2
ei + v2

ei + 1)

)
(2.26)

where N is the total number of pixels. Against its indication, this quality mea-
sure not only measures the angular error between the estimated flow vector
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Fig. 2.8. Street sequence (cropped) (145 × 100 × 20). From Left to Right, Top to
Bottom: (a) Frame 10. (b) Ground truth. (c) Classic structure tensor. (d) Nonlinear
structure tensor. (e) Robust structure tensor. (f) Coherence based smoothing. Seeff
colour plates

and the correct vector, but also differences in the magnitude of both vectors,
since it measures the angular error of the spatio-temporal vector (u, v, 1).

Table 2.1 compares the errors of the different methods. It can be observed
that all data-adaptive approaches show a higher performance than the con-
ventional method in all sequences. Between the data-adaptive methods there
are some differences, however, there is no clear winner.
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Table 2.1. Comparison between results. In all cases the flow fields are dense.
AAE = average angular error

Yosemite sequence without clouds.

Technique AAE

Classic structure tensor 3.80◦

Nonlinear structure tensor 3.74◦

Robust structure tensor 3.21◦

Coherence based structure tensor 3.43◦

Yosemite sequence with clouds.

Technique AAE

Classic structure tensor 8.78◦

Nonlinear structure tensor 7.67◦

Robust structure tensor 8.01◦

Coherence based structure tensor 8.21◦

Street sequence.

Technique AAE

Classic structure tensor 10.54◦

Nonlinear structure tensor 7.75◦

Robust structure tensor 7.08◦

Coherence based structure tensor 9.79◦

2.4 Texture Analysis

2.4.1 Robust Orientation Estimation

An important property of texture is its dominant orientation. In Sect. 2.2.1 it
was shown that the dominant orientation of an line pattern can be estimated
using a linear least squares estimator. The resulting orientation turns out to
be the eigenvector of the structure tensor belonging to the largest eigenvalue.

In Fig. 2.9(a) an oriented pattern is shown and in (b) the scatter diagram
of the gradient vectors observed at small scale in a neighborhood in the image
at the border of the two differently oriented regions. It is evident that a least
squares estimator cannot distinguish between the two oriented patterns and
will ‘smooth’ the orientation.

A robust estimation of orientation greatly improves this. We start again
with the estimator for the orientation that is based on the error measure as
given in (2.6):

ε =
∫

Ω

∫∫
KρK ψ(

√
g − (g�v)v)dx

where we have replaced the quadratic error norm with a robust error norm ψ.
The local orientation is then found by minimizing the above error measure for
v under the constraint that v�v = 1. Using a Lagrange multiplier we have to
minimize ε + λ(1− v�v). Setting ∂ε/∂v = 0 and solving for v we arrive at:
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Fig. 2.9. Gradient histogram with two differently oriented textures

Jm
ρJ (v)v = λv

where
Jm

ρJ (v) =
∫

Ω

∫∫
gg� KmKK (g − (g�v)v)KρK dx

is the ‘robustified’ structure tensor. Note that the structure tensor Jm
ρJ (v)

depends on the orientation v and thus we have to solve for the optimal ori-
entation in an iterative fixed point manner. Starting with an initial estimate
v0, calculate the structure tensor Jm

ρJ (v0) and calculate a new orientation es-
timate as the eigenvector of largest eigenvalue. This iterative procedure in
practice needs very few iterations to converge (typically 3 to 5 iterations).

In Fig. 2.10 the robust orientation estimation is compared with the linear
least squares estimation. It can be clearly observed that whereas the linear
estimator ‘gently’ changes from the one orientation to the second, the robust
estimator shows a sharp transition. A pattern with only slight variation in
orientation is shown in Fig. 2.11. Again the robust estimator is capable of
clearly detecting the edges between areas of different orientation.

2.4.2 Texture Segmentation

The three different components of the structure tensor can also directly be
integrated as features into a segmentation method, like the one proposed in
[6, 31]. This segmentation framework computes a two region segmentation
given a suitable feature vector. In our case this is the vector composed of
the three different components of the structure tensor and the image gray
value. The components of the structure tensor are normalized to the same
range as the image gray value in order to ensure a fair weighting between the
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Fig. 2.10. Comparison between least squares and robust orientation estimation.
See also colour plates

channels. Figure 2.12 reveals that with a data-adaptive approach, the segmen-
tation can benefit from the reduced blurring effects in the feature channels
and yields a higher accuracy at region boundaries. Note that although the
components of the nonlinear structure tensor look almost unsmoothed, there
is some smoothing that provides the dominant orientation also in the gaps
between the stripes. For comparison, the segmentation result obtained with
the unsmoothed structure tensor J0JJ is depicted in Fig. 2.13.

2.5 Corner Detection

When looking for some important, distinguished locations of an image, one
often considers points where two or more edges meet. Such locations have
been named corners or interest points, and a range of possible approaches
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Comparison between least squares and robust orientation estimation.
See also colour plates

exists to detect them in an image, see e.g. the reviews in [30, 33]. Methods
based on the structure tensor are well established in this field.

For detecting corners, the coherence information present in the structure
tensor after integration is exploited. At zero integration scale, the structure
tensor J0JJ as introduced in (2.1) or (2.2) contains information on intrinsically
1-dimensional features of the image, i.e. edges. For gray-scale images, only one
eigenvalue of the structure tensor J0JJ may attain nonzero values (equal to the
squared gradient magnitude), while its corresponding eigenvector represents
the gradient direction.

Two-dimensional features of an image (corners) can be detected after in-
tegrating the local 1-D information of J0JJ within some neighborhood, since
the consideration of a local neighborhood makes additional information: that
of the homogeneity, or coherence, of the surrounding orientation. If two dif-
ferently oriented edges appear in the neighborhood, the smoothed structure
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Fig. 2.12. Left Column: Segmentation with the classic structure tensor (ρ = 2).
Center Column: Segmentation with the nonlinear structure tensor (t = 25). Right
Column: Segmentation with the robust structure tensor (ρ = 3, m = 0.05). From
Top to Bottom. (a) Segmented image (250× 167). (b) Tensor component J11 based
on I2

xII . (c) J22JJ based on I2
yII . (d) J12 based on IxI IyII

Fig. 2.13. Segmentation with the unsmoothed structure tensor J0JJ

tensor J will possess two nonzero eigenvalues λ1, λ2. An analysis of the eigen-
values can serve as a measure for the coherence of the surrounding structure.
Three cases can be distinguished when regarding the eigenvalues λ1 ≥ λ2 of
the matrix:

• λ1 ≈ λ2 ≈ 0: homogeneous areas, almost no structure present
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• λ1 > 0, λ2 ≈ 0: edges, one dominant orientation
• λ1 > 0, λ2 > 0: corners, structure with ambiguous orientation

Several possibilities have been proposed to convert this information into a
coherence measure or a measure of ‘cornerness’, e.g. by Forstner [9], Harris¨
and Stephens [12], Rohr [29], or Köthe [17]. In our experiments on corner
detection we employ the last approach, and detect corners at local maxima of
the smaller eigenvalue of the smoothed structure tensor.

One should note that for this application of the structure tensor, it is nec-
essary to allow the integration of ambiguous orientation, because one searches
for exactly the points where these ambiguities attain a maximum. This is com-
pletely contrary to orientation estimation where ambiguities are to be avoided.
It therefore seems contradictive on the first glance that a data-adaptive struc-
ture tensor could perform better than the classic one on this task. Indeed,
the structure tensor based on robust statistics is not applicable here, since
it uses the same neighborhood as the classic structure tensor but selects the
weighting of the pixels in order to minimize the ambiguities.

With the nonlinear structure tensor, however, the situation is a bit dif-
ferent. The nonlinear diffusion process does not select the pixels in order to
minimize the ambiguities, but it selects the neighborhood. Thus ambiguities
in the orientation, though they are reduced, can still appear. Since the neigh-
borhood is better adapted to the structures in the image, this even leads to
advantages in comparison to the classic structure tensor, see Fig. 2.15 and
Fig. 2.16. Corners remain well localized even for higher diffusion times when
any possible noise or small-scale features would have been removed.

The better concept of data-adaptive smoothing in the case of corner de-
tection, however, is the nonlinear diffusion process stated in (2.13). The
anisotropic diffusion process propagates information along the edges. This
leads to a very precise maximum in the second eigenvalue of the structure
tensor at the position where two edges meet, see Fig. 2.15. A small diffu-
sion time already suffices to produce significant corner features which are well
localized. In Fig. 2.16 it can be observed that this kind of smoothing leads to
the best performance.

Fig. 2.14. Left: Detail of a test image with ideal corner position (50, 50). Right:
Larger eigenvalue of the unsmoothed structure tensor J0JJ
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Fig. 2.15. Cornerness measured by the smaller eigenvalue of a smoothed struc-
ture tensor J , and the detected corner. Top: Linear smoothing. Center: Isotropic
nonlinear diffusion with TV diffusivity. Bottom: Anisotropic nonlinear diffusion

It is also very closely related to the data-adaptive structure tensor pro-
posed by Kothe [17]. In order to detect corners, K¨¨ othe also smoothes along¨
edges, in his case using a linear, hourglass-shaped filter. This filter as well
propagates information along edges and leads to a maximum in the second
eigenvalue of the structure tensor at the position where edges meet.

2.6 Summary

In this chapter, we have juxtaposed several concepts for data-adaptive struc-
ture tensors. It has emerged that though the different techniques have the
same basic motivation, there are quite important differences in detail. All
data-adaptive structure tensors discussed here are to deal with the inaccu-
racies and blurring artifacts caused by the Gaussian neighborhood of the
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linear
isotropic
anisotropic

Fig. 2.16. Left: Corners detected in the ‘lab’ test image using the nonlinear structure
tensor with anisotropic diffusion. Right: Comparison of the corners detected by the
classic linear structure tensor and the nonlinear structure tensor with an underlying
isotropic and anisotropic diffusion process, respectively

conventional structure tensor. However, the strategies how to choose an adap-
tive neighborhood are different. In some typical applications of the structure
tensor, the data-adaptive structure tensors have shown their beneficial prop-
erties in comparison to the classic structure tensor. The differences between
the data-adaptive structure tensors have been sometimes marginal, sometimes
larger, depending on the application. This yields two messages: firstly, com-
pared to the conventional structure tensor, the data-adaptive methods are in
many cases worth the additional effort. Secondly, it is wise to choose a data-
adaptive technique depending on the application. There is no clear winner
that always performs better than the other techniques.
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