
1 INTRODUCTION 
The requirement for aesthetic appearance constancy 
in marble products is essential to certify that slabs 
sold to the client are alike. In this way, a robust tex-
ture definition is important for the classification of 
slabs into homogeneous classes. Visual discrimina-
tion of the human expert can be translated into algo-
rithms in order to reduce subjectivity of the human 
classification. Classification methods will be pre-
sented to illustrate the benefit of using scale-based 
models to improve the classification. 

 
2 TEXTURE 
 
It is always important to specify what we mean 
when discussing textures. Generally speaking, a tex-
ture is a repetition of pattern(s) with possible ran-
dom variations in the primitive placement rules. To 
be more precise, we have to say that unlike struc-
tures or other organization types, the texture is 
strongly linked to the visual perception of this order. 
This explains the importance of the psychophysiol-
ogy and of the translation into algorithms of the 
multi-channel frequency and orientation analysis 
performed by retinal and cortical neurons. In addi-
tion, a texture definition also depends on the obser-
vation scale. Therefore we will build a marble clas-
sification system based on a visual perception model 
of spatial organization of light intensities on a given 
scale range. 

2.1 Texture definitions 
In Tuceryan and Jain (1998) several texture defini-
tions are proposed, definitions intrinsically linked to 
feature extraction methods chosen to identify the 
texture. They group methods into geometrical, struc-
tural, statistical, model-based and signal processing-
based. 

Structural methods assume that textures are com-
posed of primitives - as textiles are composed of 
threads. Texture elements are first extracted and then 
the placement rule is analyzed. Elements can be 
blobs. Lindeberg's scale-space researches can be 
used to extract them at different scales (Lindeberg, 
1994). Morphology can be used to analyze them and 
placement rule can be defined as a tree grammar us-
ing symbols - the primitives - to form strings - the 
textures. 

Texture is related to the spatial distribution of 
light intensities, so statistical methods such as the 
co-occurrence matrices are reasonable texture analy-
sis tools. Autocorrelation captures repetitive place-
ments and drops slowly or quickly depending on 
whether the texture is coarse or not. This last prop-
erty can be linked to the power spectrum in signal 
processing models. 

Model-based methods take out a set of parame-
ters defining a model generally used as a constraint 
for synthesizing similar texture. Known models are 
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ABSTRACT: Marble texture classification is an error prone undertaking when performed by humans. There-
fore normalized methods are needed in order to obtain reproducible results. Technological advances in digital 
image acquisition and computing allows for the building of systems based on such methods. 
The classification will be represented here by dyadic scale-space models (powers of 2). We will take into ac-
count the functioning of the human visual system in reproducing its natural ability to extract the features of 
textures: opponent-colors space is used as well as dyadic approaches for both light-dark multi-scale feature 
detection and inter-pathway resolution ratios. 
The spatial organization will be captured with the use of features from the statistical sum and difference his-
tograms, from a model-based blob-oriented morphological scale-space and from statistics of wavelet coeffi-
cients. 
Features will then be classified with a common method, a Learning Vector Quantization network. 



based on the Markov random fields or on the frac-
tals. Portilla and Simoncelli introduce "A parametric 
texture model based on joint statistics of wavelet co-
efficients" (Simoncelli & Portilla, 2000) that seems 
to capture the nature of the texture - its essential fea-
tures. It binds model-based methods to signal proc-
essing ones. 

2.2 Classification comparison 
Randen and HusØy (1999) compare texture classifi-
cation using statistical and signal processing ap-
proaches [2]. For multi-textured images the best 
classification performance is achieved with the 
highly complex Quadratic Mirror Filter f16b filter 
bank. Nevertheless the computationally more effi-
cient DCT approaches or QMF critically sampled 
filter are of interest because, as the feature dimen-
sionality decreases, the classifier complexity de-
creases too. They also conclude that the co-
occurrence and the popular Gabor filter are not supe-
rior. 

The processing time must not be forgotten in 
comparative methods. A classification system has to 
be viewed as a whole: the complexity of the feature 
model extracted will require an efficient classifier. 
Therefore some of the co-occurrence features such 
as mean, energy and contrast could already be 
enough in some cases and lighter for a classifier. 

2.3 Visual perception – Color and scale ranges 
Psychophysiology has provided a very useful model 
for color reproduction. We are now aware of 
trichromacy, the ability to arrange a color match us-
ing three primary colors. Human oriented color 
spaces have also been constructed to reflect the op-
ponent-colors pathways: the light-dark, the red-
green and the blue-yellow channels. We will use the 
opponent-colors space presented in (Zhang. & Wandell, 
1996) as a preliminary step to feature extraction: 

 
X =   0.6067 R  +   0.1736 G  +  0.2001 B 
Y =   0.2988 R  +   0.5868 G  +  0.1143 B 
Z =   0.0000 R  +   0.0661 G  +  1.1149 B 
 
O1 =  0.279 X   +   0.72 Y   -   0.107 Z 
O2 = - 0.449 X   +   0.29 Y    -   0.077 Z 
O3 =  0.086 X     -   0.59 Y   +   0.501 Z 
 
Less known but also important is the difference of 
resolution within opponent-color spaces: the light-
dark contrast achieves a maximum at 10 cycles per 
degree. 

[1 degree corresponds to 0.89 centimeters on a 
screen viewed at 50 centimeters. In this configura-
tion, 10 cycles per degree corresponds to 10/0.89 = 
11.2 cycles per centimeters.]  

We will see that, more than the mean, especially 
when searching color-similar sub-classis of a given 

 
Figure 1. Using opponent color space model, we can link to a 
given scale different resolutions according to color pathways.  
 

Figure 2. In a dyadic scale space decomposition of a color op-
ponent model-based image, a given scale s0 will be character-
ized by feature of the scale s for the light-dark channel, 2 x s0 
for the red-green channel, 4 x s0 for the blue-yellow one. 

 
slab type, the contrast seems to be an effective dis-
criminating factor in the human classification crite-
ria. Actually this is due to an induction phenomenon 
intrinsically rooted in the filtering process performed 
by the retinal neurons: they compress the informa-
tion by reacting especially to transitions.  

Induction is the source of many illusions with two 
opposite forms: contrast for low frequency (0.7 cpd 
for blue-yellow), assimilation for high frequency (9 
cpd for blue-yellow) (Vanrell & Baldrich, 2003). 
Note that for 10 cpd, we have assimilation in blue-
yellow but contrast in light-dark. 

Light-dark contrast falls for resolutions above 30 
cpd, red-green for 10-20 cpd when blue-yellow for 
5-6 cpd (Wandell, 1999). Undertaking a practical 
approach allows us to imagine dyadic scales (powers 
of 2) depending on the pathways: given a scale s0 for 
the light-dark pathway we use a scale s1 = 2 x s0 for 
the red-green and s2 = 4 x s0 for the blue-yellow 
one. 

Let’s conclude the present contrast presentation 
with a numerical example: a 30 centimeter tile seen 
from 50 a centimeters distance will give a maximum 



light-dark contrast for variations of 0.89 millimeters 
- corresponding to 30x11.2 = 337 variations in the 
width of the field of view - and a resolution of 0.30 
millimeters - corresponding to 1011 variations. A 
dyadic scale will give resolution of 0.30/2 = 0.15 
millimeters in the red-green pathway, of 0.075 mil-
limeters for the blue-yellow one (see Fig. 1). 

When we move away from a surface, we gain the 
larger scales - limited by the field of view - as we 
lose the smaller ones - limited by the retinal resolu-
tion. 

3 EXPERIMENTAL MATERIAL 

A set of Marfil slabs have been acquired using a tri-
CCDs linear camera to obtain color images of the 
diffuse component of the light reflected by the slabs. 
Images have been pre-processed to remove shading 
effects due to non-homogeneity of the lighting. This 
set of images has been used as the basis of the scale-
based models discussed in the followings para-
graphs. 

4 METHODS 

Dyadic scales have been used to classify the Marfil 
slabs using different image analysis methods. For a 
given acquisition we train color features at different 
scales by shifting dyadic pathway ratios from high to 
low resolution (see Fig. 2). 

4.1 Spatial organization 
In order to feed a vector of features to the classifier 
we have to capture the nature of the spatial organiza-
tion in a digital form. In this way statistical models 
capture mean, energy, entropy, contrast and homo-
geneity. Other features, such as uniformity, density, 
coarseness, regularity, linearity, directionality… 
have various implementations. A ‘texture browsing 
descriptor’ is considered by the MPEG-7 compres-
sion format.  

But the most important is to keep relevant de-
scriptors; thus depending on the texture, only certain 
ones are retained for defining a given model. We 
will compare the use of features from the statistical 
Sum and Difference Histograms (SDH), from a 
model-based blob-oriented morphological scale-
space and from statistics of wavelet coefficients. 

4.2 Marble classification 
Ornamental stone textures are so varied that it is dif-
ficult to build a model classifying all the possible 
varieties found on the market. When granites seems 
to be easily classified due to a certain homogeneity 
of the repeated pattern at a given scale, marble often 

are characterized by the presence of veins that will 
produce a texture on a scale higher than the scale of 
the marble slab. Such slabs are evaluated by human 
experts with subjectivity and fatigue giving inconsis-
tent results. Automatic classifications have been 
introduced by Martinez & Tomás (1999) to solve 
this problem using the SDH method which computes 
features on small neighborhoods.  

Our experiments will focus on slabs of the type 
‘Crema Marfil’ coming from Murcia. 

4.3 Scale-space variations 
To improve results based on statistical methods, we 
will study the texture on different scales. Three 
methods are presented. For each one we work in the 
opponent-color space model as described in Figure 
2. A Gaussian kernel is each time applied at a given 
scale and subsampled to produce the larger scale. 

4.4 Sum and Difference Histograms 
The SDH algorithm is a powerful alternative to the 
usual spatial grey level dependence method or co-
occurrence matrices: for a distance vector (d1,d2), 
the combination of two pixels zx,y and zx+d1,y+d2 
forms the sum and difference vectors: 
 
sx,y = zx,y + zx+d1,y+d2 
dx,y = zx,y - zx+d1,y+d2 
 

The normalized histograms are: 
 
ps (i) = hs(i)/N =  #(sx,y =  i) / N 
pd (i) = hd(i)/N =  #(dx,y =  i) / N 
 

The statistical features used are:  
 

 
The Figure 3 illustrates the mean and two con-

trasts at different scales. The use of a scale factor for 
this last feature will improve the classification from 
75% (1 scale) to 88% (6 scales) – an improvement 
factor of 17%. 

We have to notice the poor initial result for 1 
scale related to the 90% with the same method used 
by Martinez & Tomás (1999). This is likely due to a 
different set of images and only the improvement 
factor should be retained. 
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Figure 3. Light-dark mean, light-dark contrast and blue-yellow 
contrast for an image set and for 6 scales. The mean remains 
constant whatever the scale (what is expected) but the contrast 
present discriminent profiles. 

4.5 Blob analysis in the Lindeberg’s Scale-space 
We explained that the contrast is a very discriminat-
ing factor in the human classification criteria. But 
how to implement it to reflect this specificity to an 
image acquired by a static vision system? The an-
swer is the Laplacian of Gaussian. 

The Gaussian kernel and its derivates are one of 
the most precious tools in image analysis. For in-

stance, filtering with a Gaussian kernel simulates the 
assimilation as a perceptual blurring; filtering with 
the second derivate is named the Laplacian of Gaus-
sian and it simulates the contrast as a perceptual 
sharpening (Vanrell&Baldrich, 2003).  

The Laplacian filter gives a strong response in 
blob detection but is too sensitive to the noise, so a 
first Gaussian filtering has to be applied. Practically, 
it is the same to filter directly by the Laplacian of 
Gaussian: 

 

 
The Lindeberg’s scale-space theory introduces 

normalization to allow comparison of blobs re-
sponses between scales. It automatically selects the 
scale at which local image structures are better de-
tected by differential operators (Salvatella, 2002).  

With a normalized Laplacian, 
 

 
blobs responses are computed for all scales and 

the maximum over all scales gives all the image 
blobs no matter their size. 

Basing ourselves on that fact, we will present a 
sharpening operator to not only find black and white 
blobs - by getting the minimas and the maximas over 
all scales but will produce an image with a flat back-
ground and contrasted response (see Fig. 4 & 5). 

We have classified the Marfil slabs using Blob 
analysis on the segmented blobs with extraction of 
features like the mean and maximum area, the mean 
and maximum ellipsoid major axes, the mean and 
maximum of the eccentricity weighted by the corre-
sponding diameter. Results of classification of 82% 
are promising because the blobs features are still not 
fully exploited. More detailed feature distributions 
analysis would give better results. Luengo (2004) 
uses the size distribution to characterize structures; 
this distribution is estimated using a so called granu-
lometry, which is the projection of a morphological 
scale-space on the scale axis. 

The major advantage of this technique is its abil-
ity to extract veins. Indeed, statistical methods do 
not find such ‘non-textural’ feature. Actually, veins  

 
Figure 4. For σ = 1, 2, 4, 8, 16, profiles of Laplacian of Gaus-
sian and normalized Laplacian of Gaussian.
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Figure 5. For given profile, the top picture illustrates the pro-
files of the maximums and minimums over all scales of LoG-
normalized transformations giving top and bottom covers over 
these scales. Their difference gives the (LoG-normalized) 
sharpen profile. The middle picture shows, in overlay on a 
Marfil original image, the original profile (grey) and the 
sharpen one (dark). This sharpen operation flats the back-
ground and allows an easy segmentation by threshold. The bot-
tom images illustrate a segmentation of the transformed origi-
nal image. 
 
are not repeated patterns producing a texture but 
produce a texture on a scale wider than the scale of 
the slab: that of the tiling. 

4.6 Parametric Texture Model based on Statistics 
of Wavelets coefficients 

 
Portilla and Simoncelli (2000) propose a universal 
model to capture important features of various tex-
ture images. It can serve as a high-level texture rep-

resentation for characterization and segmentation 
applications. It uses a pyramidal approach similar to 
the Laplacian pyramid but capturing orientations: a 
steerable pyramid. From this representation, key fea-
tures are extracted to define four statistical con-
straints: capturing the pixel intensity distribution 
(marginal statistics), the periodic or globally ori-
ented structure (raw coefficient correlation), the 
structural information such as edges, cor-
ners…(coefficient magnitude statistics) and illumi-
nation gradients due to 3D appearance (cross-scale 
phase statistics). 

This complex representation summarizes the na-
ture of the texture in 710 feature values that can 
serve for classification. An important property of 
this representation is the ability to synthesize texture 
from these features to verify their validity. 
 

 
Figure 6. A Marfil slab and a synthesized image from the set of 
statistics of wavelet coefficients. 
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Figure 7. An other Marfil slab and its synthesized image illus-
trating a non-working case due to the veins extension not cap-
tured by the model.  

5 CONCLUSION 

Three scale-based models have been presented. 
The SDH model gives interesting classification 

results on the Marfil slabs and we showed an im-
provement by introducing scale. This improvement 
seems to be essentially due to the contrast evolution 
over scales. This probably captures features of dif-
ferent sizes. 

The Parametric Texture Model based on Statistics 
of Wavelets coefficients (PTMSWC) is very com-
plete. It seems to be the "holy grail" of the statistic-
based models due to its fully automatic research of 
inter- and intra-scale features. Nevertheless the clas-
sification of the 710 parameters has to be improved 
by a reduction of these parameters to the relevant 

ones. In this way, principal component analysis or 
manual discriminating feature evaluation will be 
studied.  

The blob-oriented classification is the only one 
that is able to identify veins. Indeed the statistical 
models fail to capture such features due to the ‘non-
textural’ nature of a vein. Therefore this method 
seems to be the more appropriated for veins analysis. 
Nevertheless, for background description the other 
approaches are more complete. Another problem of 
the blob-oriented model is its sensibility to the 
choice of the threshold used to extract blobs. 

These three scale-based methods demonstrated 
the interest of scale in texture analysis. SDH over 
scales is an automatic and simple model that pro-
vides significant results. PTMSWC is more sophisti-
cated and implies other studies to use the parameters 
as input to a classifier. The blob model catches the 
veins but is sensitive to the blob extraction threshold 
level. 

In the three cases the scale is the only way to cap-
ture features of different sizes. 
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