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A B S T R A C T

In this paper we present a wavelet-based algorithm that is able to detect superimposed

periodic signals in data with low signal-to-noise ratio. In this context, the results given by

classical period determination methods depend strongly on the intrinsic characteristics of

each periodic signal, like amplitude or profile. It is then difficult to detect the different periods

present in the data set. The results given by the wavelet-based method for period

determination we present here are independent of the characteristics of the signals.

Key words: methods: data analysis – methods: numerical – stars: variables: other – X-rays:

binaries – X-rays: general.

1 I N T R O D U C T I O N

The search for periodic signals is common in many areas of

astronomy, and, often, simple Fourier-based methods or epoch

folding methods are able to detect the periods that are present in the

data sets. However, this turns out to be difficult when the periodic

signals are not sinusoidal or when the signal-to-noise ratio is very

low.

Specifically, in high-energy astrophysics two problems are

responsible for reduced signal-to-noise ratios in the data: the

relatively small number of high-energy photons when compared

with the number of photons available at other wavelengths, and the

low efficiency in photon counting of high-energy detectors. Hence,

the astronomical data supplied by X-ray telescopes, especially flux

monitorings, often suffer from poor statistics. This poses many

problems when processing and analysing the data in order to

determine the flux, detect periodic signals, etc. In addition, some

X-ray sources present several periods, which arise from different

physical processes such as pulses, eclipses in two-body systems or

occultation by a precessing accretion disc. Some examples of this

kind of sources are SMC X-1 (Wojdowski et al. 1998), LMC X-4

(Levine et al. 1991), and LS I þ658010 (Corbet, Finley & Peele

1999).

Classical period determination methods are based either on

epoch folding techniques or on Fourier decomposition analysis.

The first group of methods are based on the analysis of the

dispersion of the different light curves produced by folding the data

over a range of trial periods (see, for example, Lafler & Kinman

1965; Jurkevich 1971; Stellingwerf 1978). The second type of

methods use the Fourier transform in combination with

deconvolution techniques to deal with the data sampling function

(see, for example, Lomb 1976; Scargle 1982, 1989; Roberts, Lehár

& Dreher 1987; Press & Rybicky 1989).

Epoch-folding methods and Fourier-based methods work well

when applied to data sets that present a unique period. However,

when the analysed data set contains several periodic signals, the

behaviour of these algorithms highly depends on intrinsic signal

characteristics. Every individual periodic signal may present

different spectral behaviour (amplitude and profile) and

depending on them, the algorithm will detect some kinds of

signal better than others. Fourier-based techniques will, in

general, successfully detect two combined sinusoidal signals,

even if one of them has a low signal-to-noise ratio. However,

they have difficulties in detecting the non-sinusoidal signals that

might be present in a data set (as in the astronomical case of

pulsed emission superimposed on an orbital period). On the

contrary, epoch folding methods are well suited for detecting non-

sinusoidal signals but they tend to fail when two or more periods

are present in the data set, especially when the signal-to-noise ratio

is low.

In general, we can say that the greater the difference between the

spectral characteristics of each signal, the more difficult it is to

detect each period with classical methods, and the less statistically

significant are the results given by them. Therefore, a new

algorithm becomes immediately necessary for the detection of

superimposed periodic signals.

In this paper, we show how the methodology of wavelet theory is

very well suited to this problem, since it is completely oriented to

decompose functions into their several spectral characteristics.

This allows us to isolate every signal present in our data and to

analyse them separately, avoiding their mutual influences. In

Section 2 we outline some concepts in wavelet theory relevant to

the stated problem. In Section 3 we propose an algorithm to detect

each of the periodic signals present in a data set by combining

wavelet decomposition with classical period determination

methods. In Sections 4 and 5 we present some examples of
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synthetic data we used to test the algorithm and the results we

obtained. We summarize our conclusions in Section 6.

2 O U T L I N E O F T H E WAV E L E T T R A N S F O R M

Multiresolution analysis based on the wavelet theory introduces the

concept of details between successive levels of scale or resolutions

(Chui 1992; Daubechies 1992; Meyer 1993; Young 1993; Kaiser

1994; Vetterli & Kovacevic 1995).

Wavelet decomposition is increasingly being used for astro-

nomical signal processing (Starck & Murtagh 1994; Starck, Murtagh

& Bijaoui 1998) and remotely sensed data (Yocky 1995; Datcu, Luca

& Seidel 1996). The method is based on the decomposition of the

signal into multiple channels based on their local frequency content.

The wavelet transform is an intermediate representation between the

Fourier and the temporal one. In the Fourier transform we know the

global frequency content of our signal, but we have no information

about the temporal localization of these frequencies. However, the

wavelet transform gives us an idea of both the local frequency

content and the temporal distribution of these frequencies. Since in

Fourier space the basis functions are sinusoidal, they extend along all

space and do not have temporal concentration. However, wavelets

are concentrated around a central point, thus they have a high degree

of temporal localization.

2.1 Some theory

Next, we will briefly present an outline of the wavelet transform,

relying on the multiresolution signal representation concept.

Given a signal f ðtÞ; we construct a sequence Fm½ f ðtÞ� of

approximations of f ðtÞ: Each Fm½ f ðtÞ� is specific for the

representation of the signal at a given scale (resolution). Fm½ f ðtÞ�

represents the projection of the signal f ðtÞ from the signal space S

on to subspace Sm. In this representation, Fm½ f ðtÞ� is the ‘closest’

approximation of f ðtÞ with resolution 2m.

The differences between two consecutive scales m and m þ 1 are

the multiresolution wavelet planes or ‘detail’ signal at resolution 2m:

wm½f ðtÞ� ¼ Fm½f ðtÞ� 2 Fmþ1½f ðtÞ�: ð1Þ

This detail signal can be expressed as:

wm½f ðtÞ� ¼
l

X
Wm;lð f Þcm;lðtÞ; ð2Þ

where coefficients Wm;lðf Þ are given by the direct wavelet

transform of the signal f(t):

Wm;lðf Þ ¼

ðþ1

21

f ðtÞcm;lðtÞ dt: ð3Þ

The coefficients Wm;lðf Þ are called wavelet coefficients of f ðtÞ:

Such coefficients correspond to the fluctuations of the signal f(t)

near the point l at resolution level m. Thus, the wavelet transform

(3) represents the expansion of signal f ðtÞ in the set of basis

functions cm,l(t). These basis functions are scaled and translated

versions of a general function c(t) called Mother Wavelet. To

construct the basis functions cm,l(t), the Mother Wavelet is dilated

and translated according to parameters m and l as follows:

cm;lðtÞ ¼ 2m/2cð2mt 2 lÞ: ð4Þ

Therefore, all the basis functions cm,l(t) have the same profile, that

is, the Mother Wavelet profile. Using (4) we obtain an orthonormal

wavelet basis (Daubechies 1992).

The inverse discrete wavelet transform is given by the

reconstruction formula:

f ðtÞ ¼
m

X
l

X
Wm;lð f Þcm;lðtÞ: ð5Þ

In summary, the wavelet transform describes at each resolution

step the difference between the previous and the current resolution

representation. By iterating the process from the highest to the

lowest available resolution level we obtain a pyramidal represen-

tation of the signal. This usually includes a decimation process, i.e.

in each iteration 1 out of 2 points is discarded, which implies that

the number of data points at lower frequencies is highly reduced.

In the Fourier transform, the noise contribution is spread along

all frequencies. In contrast, one of the interesting properties of the

wavelet transform (which is also frequency based) is that noise

contribution is more important on the higher frequency wavelet

planes.

2.2 The ‘à trous’ algorithm

In order to obtain a discrete wavelet decomposition for signals, we

follow Starck & Murtagh (1994) and we use the discrete wavelet

transform algorithm known as ‘à trous’ (‘with holes’) to

decompose the signal into wavelet planes. Given a signal p we

construct the sequence of approximations:

F1ðpÞ ¼ p1; F2ðp1Þ ¼ p2; F3ðp2Þ ¼ p3; · · ·: ð6Þ

To construct the sequence, this algorithm performs successive

convolutions with a filter obtained from an auxiliary function

named scaling function. We use a scaling function which has a B3

cubic spline profile. The use of a B3 cubic spline leads to a

convolution with a mask of five elements, all elements being scaled

up by 16: (1, 4, 6, 4, 1).

As stated above, the wavelet planes are computed as the

differences between two consecutive approximations pi21 and pi.

Letting wi ¼ pi21 2 pi ði ¼ 1; · · ·; nÞ, in which p0 ¼ p, we can

write the reconstruction formula:

p ¼
Xn

i¼1

wi þ pr : ð7Þ

In this representation, the signals pi ði ¼ 0; · · ·; nÞ are versions of

the original signal p at increasing scales (decreasing resolution

levels), wi ði ¼ 1; · · ·; nÞ are the multiresolution wavelet planes and

pr is a residual signal (in fact n ¼ r, but we explicitly substitute n

by r to clearly express the concept of residual). In our case, we are

using a dyadic decomposition scheme. Thus, the original signal p0

has double resolution than p1, the signal p1 double resolution

compared to p2, and so on. If the resolution of signal p0 is, for

example, 10Dt (being Dt the sampling of the data), the resolution of

p1 would be 20Dt, the resolution of p2 would be 40Dt, etc. All these

pi ði ¼ 0; · · ·; nÞ signals have the same number of data points, in

contrast to some more usual wavelet decomposition algorithms

which reduce the number of points by a factor of 2 when going

through increasing scales (process known as decimation step).

Later we will see why we are interested in maintaining the number

of points.

3 P R O P O S E D A L G O R I T H M

We propose to apply the wavelet decomposition using the ‘à trous’

algorithm to solve our initial stated problem: to isolate each of the

366 X. Otazu et al.

q 2002 RAS, MNRAS 333, 365–372



periodic signals contained in a set of data and study them

separately.

Hence, the algorithm we propose is as follows:

(i) choose a value for n and decompose the original signal p into

its wavelet planes wi ði ¼ 0; · · ·; nÞ;

(ii) detect periods in each of the n obtained wavelet planes wi.

Any method can be used to detect the periods present in each wi.

In our tests, we used Phase Dispersion Minimization (PDM)

(Stellingwerf 1978) and CLEAN (Roberts et al. 1987) methods. PDM

belongs to the group of epoch folding methods mentioned in the

introduction. Therefore it folds the data points over a set of trial

periods and analyses the dispersion of every light curve in the

phase space. To do that, the data points are grouped in phase bins

and the most probable period is then found by minimizing the sum

of the bin variances. On the other hand, CLEAN belongs to the group

of Fourier transform decomposition methods. It works in the

frequency domain and it is based on the fact that the spectrum

obtained from the Fourier transformation of the data set contains

artefacts caused by the incompleteness of the sampling (time gaps)

and the finite time span of it. CLEAN uses a non-linear

deconvolution algorithm to clean (hence its name) these artefacts

from the original (dirty) spectrum. This is done by iteratively

subtracting from the dirty spectrum the expected response of a

signal composed by a unique harmonical function (clean

component). From the set of clean components, a clean spectrum

is obtained which is at the end corrected to preserve the noise level

and the frequency resolution.

PDM is well suited to identify signals with any profile, not just a

sinusoidal one. For instance, if we have a burst-like periodic signal,

it is more successfully detected by the PDM algorithm than by

CLEAN. On the other hand, if we knew that we are trying to estimate

the period of a sinusoidal signal, it would be better to use CLEAN.

The algorithm we present here could be seen as an improvement

over the usual period detection algorithms, because prior to using

them we decompose our signal into its wi wavelet planes, and

afterwards we apply these algorithms to each wi.

In PDM and CLEAN methods there is only one data set to study

and to estimate its period. However, in the wavelet-based method

there are several data sets to study (several wavelet planes), and this

improves the detection probabilities. We can search for a certain

period in several wavelet planes, which helps to discard some of

the usual marginal artefact detections present in PDM and CLEAN

and to detect the true periods present in our original data.

We can use other wavelet-based algorithms (Szatmáry, Vinkó &

Gál 1994), which are based on approximations of a continuous

wavelet transform and the study of wavelet space coefficients.

However, these algorithms present a non-direct inverse wavelet

transform: the search for periodicities is based on the fit between

the wavelet base function profile and the signal one, and therefore

on the values of the wavelet transform coefficients, which depend

strongly on the wavelet base used. For example, if we took a signal

constructed by a Gaussian with 1-d duration which repeats every

30 d, it would be very difficult to find a wavelet base that fits well to

this sparse signal. In contrast, if we take a suitable wavelet base and

a decomposition scheme that allows us to perform its inverse

transform easily, this base will fit the profile of every Gaussian.

Hence, performing the inverse transform of every wavelet scale, we

can work in the temporal representation to find directly the

periodicities. This is the case of the wavelet decomposition

algorithm we use in the method we present here.

Another reason to use the ‘à trous’ algorithm is that the sampling

of the wavelet planes is the same as the original data. This allows us

to work directly in the temporal space with the frequency content

of the corresponding wavelet plane. In other wavelet decompo-

sition algorithms, we are usually forced to work on the decimated

wavelet space.

Hereafter, and for notational convenience, the wavelet-based

PDM and CLEAN methods will be called WPDM and WCLEAN

respectively.

4 S I M U L AT E D DATA

In order to check the benefit of applying WPDM versus PDM, or

WCLEAN versus CLEAN, we generated several sets of simulated data

containing two superimposed periodic signals. Each data set is

composed of a high-amplitude primary sinusoidal function and a

secondary low-amplitude one. For the latter we used two kinds of

functions: sinusoidal and Gaussian. The first are intended to

simulate variable sources with pure sinusoidal intensity profile

(like precession of accretion discs), and the second burst-like

events (like pulses or eclipses). Finally, we added a white-Gaussian

noise to this combination of signals. We increased the value of the

noise standard deviation, s, up to the value where detection of

periodic signals became statistically insignificant in both the

classical and the wavelet-based methods.

Here we list the characteristics of the signals.

(i) Each signal is generated as an evenly spaced data set

composed of 1000 points, separated by a unit between them.

(ii) The high-amplitude sinusoidal function has an amplitude

equal to 1 and a period of 108.5 units. The period selected should

satisfy two conditions: not be an exact divisor of the number of

points in the data set, and allow the presence of more than 5

complete periods in the simulated signal to guarantee the

possibility of detection.

(iii) The amplitudes of the low-amplitude periodic functions

(sinusoidal or Gaussian) are 0.1 and 0.5.

(iv) The periods used for the secondary functions are 13.13 and

23.11 units. Others could be used, satisfying the condition that they

are not harmonics of the high-amplitude sinusoidal function

period.

(v) In the case of the Gaussian signal, we have used two values

for the full width at half-maximum (FWHM), corresponding to 2

and 6 units, respectively.

In the first three columns of Table 1 we present the parameters

used to generate each simulated data set in the case of sine þ sine

periodic signals. In Table 2 the first four columns show the

parameters used to generate the sine þ Gaussian signals.

5 R E S U LT S

The simultaneous use of two independent methods, such as CLEAN

and PDM, is usually applied to discriminate between false period

detections and true ones. A similar procedure can be used with

each one of the wavelet planes in the WPDM and WCLEAN methods.

Therefore, when comparing the behaviour of these different

methods, we have to compare the usual PDM-CLEAN method

combination for period estimation prior to the new WPDM-WCLEAN

combination.

The primary period (108.5 units) is always detected by all

methods, and does not appear in Tables 1 and 2. In these tables, the
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four last columns show the detected low-amplitude periods for

each data set using PDM, CLEAN, WPDM and WCLEAN methods,

respectively. A dash is shown when a period is not detected,

and a question mark when the detection is difficult or doubtful.

When a period is indicated in the wavelet-based methods, we

also show in parentheses the wavelet planes where it is

detected.

5.1 Sine 1 sine case

To illustrate the performances of WPDM and WCLEAN methods, we

show in Fig. 1 a simulated data set that contains two pure

sinusoidal functions without noise, and both their PDM and CLEAN

outputs (in PDM we look for minima with subharmonics, while in

CLEAN we look for maxima). The 108.5-unit period is detected by

both methods. In the case of PDM we have zoomed into the range of

short trial periods and dispersion to try to detect the 23.11-unit

minimum. It is clear that even in the case of signals without noise,

the PDM method is unable to find the secondary signal

(period ¼ 23.11 units). In contrast, CLEAN is able to find it,

although with a low normalized power (less than 0.1, which is the

ratio between the amplitudes of both periodic signals). The output

of WPDM is shown in Fig. 2 and the one of WCLEAN in Fig. 3. As

one would expect, the secondary period is only seen in the lower

wavelet planes (w1 to w4), while the primary long-term period of

108.5 units is better detected when working with higher wavelet

planes (w4 to w6). We have worked until w6, because in this plane

the 108.5-unit period is clearly detected, and there is no reason to

continue with higher values of n. This will be the case in all the

analysed data we present here.

Some remarks can be made after inspection of Table 1.

(i) There is a better performance of CLEAN relative to PDM,

because the latter has problems when dealing with superimposed

low-amplitude periodic signals. Only when the amplitude of the

secondary signal is close enough to the primary one ðamplitude ¼

0:5Þ is PDM able to detect it.

(ii) In all methods, with high noise-to-signal ratios the detected

periods are slightly different from the simulated ones.

(iii) WPDM and WCLEAN perform always better than the PDM and

CLEAN methods. When CLEAN marginally detects the secondary

period, WPDM and WCLEAN have no problems in detecting it, and

they work properly even with higher noise. In the WPDM case, the

results are always much better than with PDM.

(iv) As the noise increases, the detection starts to fail in the lower

wavelet planes (higher frequencies), and only the higher ones

(lower frequencies) are noise-free enough to allow period

detection.

(v) The maximum ratio between the noise and the signal

amplitude to detect a period with WPDM and WCLEAN, is nearly

Table 1. Periods detected in the sine þ sine data sets. The first three columns are the
parameters used for the simulated data. A dash is shown when a period is not detected,
and a question mark when the detection is difficult or doubtful. When a period is
indicated in the wavelet-based methods, we also show in parentheses the wavelet planes
where it is detected.

Period Amplitude snoise PDM CLEAN WPDM WCLEAN

13.13 0.1 0.0 – 13.13 13.13 (1,2,3) 13.13 (1,2,3)
0.1 – 13.12 13.13 (2,3) 13.13 (2,3)
0.2 – 13.11 13.11 (2,3) 13.11 (2,3)
0.4 – 13.09 13.09 (2,3) 13.09 (2,3)
0.6 – 13.09? 13.09 (3) 13.09 (2,3)
0.8 – – 13.08 (3) 13.08 (2,3)
1.0 – – 13.08 (3) 13.08 (2,3)
1.2 – – 13.07 (3?) 13.07 (2?,3?)
1.4 – – 13.07 (3?) 13.07 (2?,3?)
1.6 – – – –

0.5 0.0 13.13 13.13 13.13 (1,2,3) 13.13 (1,2,3)
0.5 13.12 13.12 13.13 (2,3) 13.13 (2,3)
1.0 13.12 13.12 13.13 (2,3) 13.13 (2,3)
2.0 13.09 13.09 13.13 (2,3) 13.13 (2,3)
3.0 13.08? 13.08? 13.13 (2?,3) 13.13 (2,3)
4.0 – – 13.13 (3) 13.13 (2,3)
5.0 – – 13.13 (3) 13.13 (2?,3)
6.0 – – 13.13 (3?) 13.13 (3?)
8.0 – – – –

23.11 0.1 0.0 – 23.11 23.11 (1,2,3,4) 23.11 (1,2,3,4)
0.1 – 23.12 23.11 (2,3,4) 23.11 (2,3,4)
0.2 – 23.12 23.13 (3,4) 23.13 (3,4)
0.4 – 23.12? 23.11 (3,4) 23.11 (3,4)
0.6 – – 23.17 (3,4) 23.17 (3,4)
0.8 – – 23.13 (3?,4) 23.13 (3?,4)
1.0 – – 23.13 (4?) 23.11 (4?)
1.2 – – – –

0.5 0.0 23.11 23.11 23.11 (1,2,3,4) 23.11 (1,2,3,4)
0.5 23.11 23.11 23.11 (2,3,4) 23.11 (1,2,3,4)
1.0 23.10 23.12 23.12 (2?,3,4) 23.13 (2?,3,4)
2.0 23.11 23.11 23.11 (3,4) 23.11 (3,4)
3.0 – 23.11? 23.17 (3?,4) 23.17 (3?,4)
4.0 – – 23.13 (4?) 23.13 (4?)
5.0 – – – –
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constant for a given period, being around 12 for the 13.13-unit

period and around 8 for the 23.11-unit period. The reason for this

difference is that there are 76 complete periods in the case of the

13.13-unit period, and only 43 complete periods in the case of the

23.11-unit period.

5.2 Sine 1 Gaussian case

For illustrative purposes, we show in Fig. 4 the wavelet

decomposition of a sine þ Gaussian signal. In the lower wavelet

planes (planes w1 and w2) we have isolated the Gaussian

contribution. In the w3 we have a mixed contribution from both

periods, but in the higher planes we only have the longest period

contribution.

Table 2. Periods detected in the sine þ Gaussian data sets. The first four columns are the parameters
used for the simulated data. A dash is shown when a period is not detected, and a question mark when
the detection is difficult or doubtful. When a period is indicated in the wavelet-based methods, we also
show in parentheses the wavelet planes where it is detected.

FWHM Period Amplitude snoise PDM CLEAN WPDM WCLEAN

2.0 13.13 0.1 0.0 – 13.13 13.13 (1,2,3) 13.13 (1,2,3)
0.1 – – 13.13 (2?,3?) 13.11 (3?)
0.15 – – – –

0.5 0.0 – 13.13 13.13 (1,2,3) 13.13 (1,2,3)
0.5 – 13.14 13.14 (2,3) 13.14 (2?,3)
0.75 – – 13.15 (2?,3?) –
1.0 – – – –

23.11 0.1 0.0 – 23.11 23.11 (2?,3) 23.11 (3?,4)
0.1 – – 23.11 (2?,3?) 23.11 (4?)
0.15 – – – –

0.5 0.0 – 23.11 23.11 (2?,3,4) 23.11 (2?,3)
0.5 – – 23.12 (2?,3?) –
0.75 – – – –

6.0 13.13 0.1 0.0 – 13.13 23.12 (1,2,3) 13.13 (2,3)
0.1 – 13.13 23.13 (2,3) 13.13 (2,3)
0.2 – 13.13? 23.14 (2?,3) 13.13 (2?,3)
0.3 – – 23.14 (3) 13.13 (2?,3)
0.5 – – – –

0.5 0.0 13.13 13.13 13.13 (1,2,3,4?) 13.13 (1,2,3,4?)
0.5 13.13 13.13 13.13 (2,3) 13.13 (2,3)
1.0 13.12? 13.12? 13.13 (2?,3) 13.13 (2?,3)
1.5 – – 13.13 (3) –
2.0 – – – –

23.11 0.1 0.0 – 23.11 23.11 (1,2,3,4?) 13.13 (1,2,3,4?)
0.1 – 23.12 23.11 (2,3,4?) 23.11 (2,3,4?)
0.15 – 23.12? 23.12 (2?,3,4?) 23.11 (2?,3,4?)
0.2 – – – –

0.5 0.0 23.11 23.11 23.11 (1,2,3,4) 13.13 (1,2,3,4)
0.5 23.11 23.11 23.11 (1,2,3) 23.11 (2,3,4)
1.0 23.12? 23.12? 23.12 (3,4) 23.11 (3,4?)
1.5 – – 23.12 (3?) –
2.0 – – – –

Figure 1. Top: simulated data of a sinusoid with 23.11-unit period,

amplitude ¼ 0:1 and snoise ¼ 0, superimposed on the sinusoid with 108.5-

unit period and amplitude ¼ 1:0. Bottom: PDM and CLEAN outputs of this

data set.

Figure 2. WPDM output for each wavelet plane of the data at the top of

Fig. 1.
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We must note that the use of two different FWHM for the

Gaussian, combined with two different periods (13.13 and 23.11

units), gives four different profiles. Hence, the phase duration of

the burst-like event ranges from very low to relatively high values

in the following order: FWHM ¼ 2 and period ¼ 23:11, FWHM ¼

2 and period ¼ 13:13, FWHM ¼ 6 and period ¼ 23:11, and finally

FWHM ¼ 6 and period ¼ 13:13.

In view of the results displayed in Table 2 we can make the

following comments.

(i) Again, there is a better performance of CLEAN than PDM, for

the reason explained above. However, we must note that when the

FWHM is only 2 units, PDM never detects the secondary period.

Only with FWHM ¼ 6 units and an amplitude of 0.5 can PDM

detect the low-amplitude periodic signals.

(ii) In all methods, with high noise-to-signal ratios the detected

periods are slightly different from the simulated ones.

(iii) WPDM and WCLEAN always perform better than PDM and

CLEAN methods. When CLEAN marginally detects the secondary

period, WPDM and WCLEAN have no problems to detect it, and they

work properly even with higher noise. In the WPDM case, the results

are always much better than with PDM.

(iv) As the noise increases, the detection starts to fail in the lower

wavelet planes (higher frequencies), and only the higher ones

(lower frequencies) are noise-free enough to allow period

detection.

(v) In all cases with amplitude ¼ 0:1, the WPDM performance is

very similar to WCLEAN. In the amplitude ¼ 0:5 cases, WPDM is

always better than WCLEAN because the signal is not sinusoidal and

the amplitude is high enough to allow a good detection.

(vi) For a given amplitude of the Gaussian signal, the maximum

noise-to-signal ratio achieved with WPDM and WCLEAN increases

with the phase duration of the FWHM.

Finally, and for illustrative purposes, we show in Figs 5 and 6

two simulated data sets generated with the following common para-

meters: 13.13-unit period, FWHM ¼ 6:0 units and amplitude ¼ 0:5:

The only difference is that in Fig. 5, snoise ¼ 0:5, while in Fig. 6,

snoise ¼ 1:5. The outputs of PDM, CLEAN, WPDM and WCLEAN are

shown in Figs 5–10.

Figure 3. WCLEAN output for each wavelet plane of the data at the top of

Fig. 1.

Figure 4. Wavelet decomposition of the simulated data which contains a

Gaussian with 13.13-unit period, a FWHM of 2.0 units, amplitude ¼ 0:1

and snoise ¼ 0, superimposed on the sinusoid with 108.5-unit period and

amplitude ¼ 1:0.

Figure 5. Top: simulated data of a Gaussian with 13.13-unit period, a

FWHM of 6.0 units, amplitude ¼ 0:5 and snoise ¼ 0:5, superimposed on the

sinusoid with 108.5-unit period and amplitude ¼ 1:0. Bottom: PDM and

CLEAN outputs of this data set.

Figure 6. Top: simulated data of a Gaussian with 13.13-unit period, a

FWHM of 6.0 units, amplitude ¼ 0:5 and snoise ¼ 1:5, superimposed on the

sinusoid with 108.5-unit period and amplitude ¼ 1:0. Bottom: PDM and

CLEAN outputs of this data set.
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As can be seen in the figures, in the case snoise ¼ 0:5, the 13.13-

unit period is clearly detected by all methods. In WPDM and

WCLEAN the period is detected in the wavelet planes w2 and w3.

These detections are much better than those of PDM and CLEAN.

On the other hand, in the snoise ¼ 1:5 case, the period is not

detected by PDM nor by CLEAN. WCLEAN also fails to detect it: the

maximum in the wavelet plane w3 is not indicative of a period

detection and, moreover, its position is in the 15.5-unit trial period.

The only clear detection with a subharmonic is in w3 of WPDM.

6 C O N C L U S I O N S

When dealing with two superimposed periodic signals, the

performance of classical methods, like PDM and CLEAN, depends

on the characteristics of these signals. These methods often fail to

detect both periods simultaneously, even with high or moderate

signal-to-noise ratios.

With the wavelet-based methods we present here, WPDM and

WCLEAN, it is possible to reach lower values of signal-to-noise

ratios and still detect both periodic signals. This means that the

wavelet-based methods are less affected by noise than PDM and

CLEAN, and they allow us to detect periodic signals with noisier

data.

Another advantage of the proposed methods is the simultaneous

detection of periods in several wavelet planes. If a period is

marginally detected in more than one wavelet plane, we are

probably detecting a true periodic signal. This allows us to improve

the detection confidence.

These facts prove the major ability of WPDM and WCLEAN over

PDM and CLEAN to deal with noisy signals and to detect

superimposed periods even with low signal-to-noise ratios.
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