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Image fusion with additive multiresolution
wavelet decomposition.
Applications to SPOT+Landsat images
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A technique based on multiresolution wavelet decomposition was developed for the merging and data fusion of
a high-resolution panchromatic image and a low-resolution multispectral image. The standard data fusion
methods may not be satisfactory, because they can distort the spectral characteristics of the multispectral
data. The method presented here consists of adding the wavelet coefficients of the high-resolution image to
the multispectral (low-resolution) data. More specifically, we add the high-order coefficients of the wavelet
transform of the panchromatic image to the intensity component (L) of the multispectral image. The method
is thus an improvement on standard intensity—hue—saturation (IHS or LHS) mergers. An alternative ap-
proach for correcting the red—green—blue coefficients is also discussed. We used the method to merge SPOT
and Landsat Thematic Mapper images (SPOT means Systeme pour ’Observation de la Terre). The technique
presented is clearly better than the THS and LHS mergers for preserving both spectral and spatial information.
© 1999 Optical Society of America [S0740-3232(99)00403-2]
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1. INTRODUCTION

There are several situations that require high spatial and
high spectral resolution simultaneously in a single image.
This is particularly important in remote sensing. In
other cases, for example, in astronomy, high spatial reso-
lution and high signal-to-noise ratio may be required.
However, in most cases instruments are not capable of
providing such data, either because of design or because
of observational constraints. For example, in remote
sensing, SPOT-PAN satellite data provide high-resolution
(10-m pixels) panchromatic data (SPOT means Systeme
pour I'Observation de la Terre; PAN means panchro-
matic), whereas Landsat Thematic Mapper (TM) satellite
data provide lower-resolution (30-m pixels) multispectral
images. In astronomy, space-borne telescopes give high-
resolution images, but the photons are expensive to col-
lect, thus making long-exposure multispectral observa-
tions unusual. From the ground, however, the resolution
is poor, but the photons are cheap to collect and the
signal-to-noise ratio can be increased. In addition, it is
easy to obtain long-exposure (but low-resolution) multi-
spectral data from the ground.

One possible solution comes from the field of data
fusion.! A number of methods have been proposed for
merging panchromatic and multispectral data.>® The
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most common procedures are methods based on
intensity—hue—saturation transform (IHS and LHS
mergers).*® However, the IHS and LHS methods pro-
duce spectral degradation. This is particularly crucial in
remote sensing if the images to merge were not taken at
the same time. In the past few years multiresolution
analysis has become one of the most promising methods
for the analysis of images in remote sensing.® Recently,
several authors (Yocky,”® Garguet-Duport et al.,’
Ranchin et al.1°) proposed a new approach to image merg-
ing that uses a multiresolution analysis procedure based
on the discrete two-dimensional wavelet transform.
Nunez et al.'! also carried out a preliminary study of the
wavelet-based method in combination with image recon-
struction. The wavelet approach preserves the spectral
characteristics of the multispectral image better than the
standard IHS or LHS methods.

Wavelet-based image merging can be performed in two
ways: (i) by replacing some wavelet coefficients of the
multispectral image with the corresponding coefficients of
the high-resolution image and (ii)) by adding high-
resolution coefficients to the multispectral data. Here we
further explore the wavelet transform image merging
technique with special attention given to the additive
merger. To decompose the data into wavelet coefficients,
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we use the discrete wavelet transform algorithm known
as a trous (with holes). The method is applied to merge
SPOT and Landsat (TM) images.

2. STANDARD MERGING METHODS

The standard merging methods are based on the transfor-
mation of the red—green—blue (RGB) multispectral chan-
nels into the intensity—hue—saturation components.'?
Intensity refers to the total color brightness, hue refers to
the dominant or average wavelength that contributes to a
color, and saturation refers to the purity of a color relative
to gray. With the standard methods the usual steps to
perform are the following:

1. Register the low-resolution multispectral image to
the same size as the high-resolution panchromatic image
so that it is superimposed.

2. Transform the R, G, and B bands of the multispec-
tral image into the intensity—hue—saturation compo-
nents.

3. Modify the high-resolution panchromatic image to
take into account the spectral differences with respect to
the multispectral image, the different atmospheric and il-
lumination conditions, etc. This is usually performed by
conventional histogram matching between the panchro-
matic image and the intensity component of the
intensity—hue—saturation representation. Specifically,
after computation of the histogram of both the panchro-
matic image and the intensity component of the multi-
spectral image, the histogram of the intensity (of the mul-
tispectral image) is used as a reference to which we match
the histogram of the panchromatic image.

4. Replace the intensity component with the panchro-
matic image, and perform the inverse transformation to
obtain the merged RGB image with merged panchromatic
information.

Throughout this paper we assume that all RGB values
are scaled over the 0—255 range.

The result of the standard merging methods depends
on the intensity—hue—saturation system used. Many
intensity—hue—saturation transformation algorithms
have been developed for converting RGB values. Al-
though the complexity of the models varies, the algo-
rithms produce similar values for hue and saturation.
However, the algorithms differ in the method used for cal-
culating the intensity component of the transformation.
The most common intensity definitions are

1=1IR, G, B) = max(R, G, B),

L=L(R,G,B)= (R +G + B)/3,

L' =L'(R, G, B) = [max(R, G, B)
+ min(R, G, B)]2.

We call the systems based on these definitions THS,
LHS, and L'HS color systems, respectively. The first
system (based on I), also known as Smith’s hexcone,'? ig-
nores two of the components to compute the intensity and
will produce equal intensity for a pure color, e.g., I
= 1(255, 0, 0) = 255 and for a white pixel I = I(255,
255, 255) = 255. However, the second system (based on
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L), known as Smith’s triangle model,'? would produce in-
tensities of L = L (255, 255, 255) = 255 for a white pixel
but only L = L(255, 0, 0) = 85 for a pure color. The
third system (based on L')'2 would again produce a result
of L' = L'(255, 255, 255) = 255 for the white pixel and
L' = L'(255, 0, 0) = 125 for a pure color.

Furthermore, the transformation algorithm based on
the third definition (L’) shows bizarre behavior in some
cases. For example, if we have RGB values of
(R, G, B)= (100, 150, 200), transform them to the
L'HS system, thus obtaining (L'HS) = (150, 210,
0.476), add 10 counts (over a maximum of 255) to the L’
component (now L' = 160), and reverse the transforma-
tion [R = R(160, 210, 0.476) = 115, G = G(160, 210,
0.476) = 160, B = B(160, 210, 0.476) = 205]; the result-
ing RGB values are (R, G, B) = (115, 160, 205); i.e., the
color with the lowest value (R) is the one that has the
largest increment, whereas the component with highest
value (B) has the lowest increment. However, if we
transform the same RGB values (R, G, B) = (100, 150,
200) to the LHS system, thus obtaining (LHS)
= (150, 210, 0.333), and again add 10 counts to the L
component (now L = 160) and reverse the transforma-
tion, the RGB values would be (R, G, B) = (107, 160,
213). In this case the increment of ten counts in the in-
tensity is distributed proportionally to the values of the R,
G, and B components.

Thus in this paper we prefer the definition L = (R
+ G + B)/3 for the intensity component, although we
use both THS- and LHS-based standard merging methods
to compare our results. When this component is defined
as L = (R + G + B)/3 it is also called lightness.

3. WAVELET DECOMPOSITION

Multiresolution analysis based on the wavelet theory per-
mits the introduction of the concepts of details between
successive levels of scale or resolution.!4~*?

Wavelet decomposition is being used increasingly for
the processing of images.?®?! The method is based on the
decomposition of the image into multiple channels on the
basis of their local frequency content. The wavelet trans-
form provides a framework for decomposing images into a
number of new images, each with a different degree of
resolution. The wavelet representation is an intermedi-
ate representation between the Fourier and the spatial
representation. In the Fourier transform we know the
global frequency content of our image, but we have no in-
formation about the spatial localization of these frequen-
cies. However, the wavelet transform gives us an idea of
both the local frequency content and the spatial distribu-
tion of these frequencies. Since in Fourier space the base
functions are sinusoidal, they extend along all space and
do not have spatial concentration. But wavelets are con-
centrated around a central point; thus they have a high
degree of spatial localization.

A. Theory

Below, we present the basics of the wavelet transform, re-
lying on the multiresolution signal representation
concept.®?2  First, we present one-dimensional formulas
that can be extended easily to the two-dimensional case.
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Given a signal f(¢), we construct a sequence F,,[f(¢)]
of approximations of f(¢). Each F,,[f(¢)] is specific for
the representation of the signal at a given scale (resolu-
tion). F,[f(¢)] represents the projection of the signal
f(¢) from the signal space S onto subspace S,,. In this
representation F, [f(¢)] is the closest approximation of
f(¢) with resolution 2™.

The differences between two consecutive scales m + 1
and m are the multiresolution wavelet planes or detail
signal at resolution 2™:

wy[£#)] = Fpa[£(2)] — F[£(2)]. 1)

This detail signal can be expressed as

Wl £()] = D W n(£) i n(8), )

where coefficients W, ,,(f) are given by the direct wavelet
transform of the signal f(¢):

+oo

Wm,n(f):f £(t) i n(2)de. 3

In the direct wavelet transform (3), m and n are scaling
and translational parameters, respectively. The coeffi-
cients W,, ,(f) are called wavelet coefficients of f(¢).
Such coefficients correspond to the fluctuations of the sig-
nal f(¢) near the point n at resolution level m. Thus the
wavelet transform (3) represents the expansion of signal
f(¢) in the set of basis functions #,, ,(¢). These basis
functions are scaled and translated versions of a general
function (¢) called mother wavelet. To construct the
basis functions i, ,(t), the mother wavelet (¢) is di-
lated and translated according to parameters m and n as
follows:

Y n(t) = 2™24(2™¢ — n). 4)

Using Eq. (4) we obtain an orthonormal wavelet
basis.'® Parameter m stretches or compresses the
mother wavelet, modifying this function to produce a nar-
rower or broader new function. Therefore all the basis
functions ¢, ,(f) have the same profile, that is, the
mother wavelet profile, but dilated and translated accord-
ing to parameters m and n, respectively.

The inverse discrete wavelet transform is given by the
reconstruction formula

£(t) = D) 2 Wi u(£) i n(0). (5)

In summary, the wavelet transform describes at each
resolution step the difference signal between the previous
and the current resolution representation. By iterating
the process from the highest to the lowest available reso-
lution level, we obtain a pyramidal representation of the
signal. The advantage of the wavelet transform defined
above is that it relies on an orthogonal transform, so the
information difference from one resolution level to the
next is nonredundant.

B. A Trous Algorithm

In the discrete case the algorithm described above is not
shift invariant, which can be a problem for data fusion.
To obtain a shift-invariant discrete wavelet decomposi-
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tion for images, we follow Starck and Murtagh,?® and we
use the a trous algorithm?* to decompose the image into
wavelet planes. Given an image p we construct the se-
quence of approximations

F3(py) = ps,--- -

Fi(p) = p1, Fy(p1) = P2,

To construct the sequence, this algorithm performs suc-
cessive convolutions with a filter obtained from an auxil-
iary function called the scaling function. We use a scal-
ing function that has a B; cubic spline profile. The use of
a B3 cubic spline leads to a convolution with a mask of
5 X 5:

1 4 6 4 1

1 4 16 24 16 4

— |6 24 36 24 6
956 (6)

4 16 24 16 4

1 4 6 4 1

As stated above, the wavelet planes are computed as
the differences between two consecutive approximations
P;-1 and p;. Letting w;, = p;,_; —p; { = 1,..., n), in
which py = p, we can write the reconstruction formula

n

P=2 W +D,. ("
=1

In this representation the images p; (I = 0,..., n) are
versions of the original image p at increasing scales (de-
creasing resolution levels), w; (I = 1,..., n) are the mul-
tiresolution wavelet planes, and p, is a residual image.
In our case we use a diadic decomposition scheme. Thus
the original image p, has twice the resolution of p;, im-
age p; has twice the resolution of p,, and so on. If the
resolution of image p, is, for example, 10 m, the resolu-
tion of p; would be 20 m, the resolution of p, would be 40
m, etc. Note, however, that all the consecutive approxi-
mations (and wavelet planes) in this process have the
same number of pixels as the original image. This is a
consequence of the fact that the a trous algorithm is an
oversampled transform.'® This is a restriction on the use
of this particular wavelet approach for applications such
as image compression.

It is interesting to note that the a trous algorithm is in
some ways similar to the Laplacian pyramid method de-
veloped by Burt and Adelson?® to compress images. The
Laplacian pyramid method also computes a series of im-
ages of decreasing resolution by filtering the original im-
age and the successive approximations with a low-pass
filter. The 5 X 5 mask [relation (6)] used in the a trous
algorithm is one of the low-pass filters that can be used to
construct the Laplacian pyramid. However, in the La-
placian pyramid, once the original image is convolved
with the low-pass filter, the resulting image is reduced in
size by taking one pixel of each four. Thus the number of
pixels decreases by a factor of 4 at each scale. To com-
pute the difference signal (equivalent to the wavelet
planes of the a trous algorithm), the Laplacian pyramid
method expands the decimated image to the size of the
image of the previous scale by a Gaussian interpolation
with the same low-pass filter.
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The Laplacian pyramid method has the advantage that
it is easier to understand than the more cumbersome
wavelet theory on which the a trous algorithm is based.
However, the disadvantage of the Laplacian pyramid
method is the lack of invariance to translation, which can
be a problem in signal analysis, pattern recognition, or, as
in our case, data fusion.!®

4. WAVELET IMAGE FUSION METHOD

The wavelet merger method is based on the fact that, in
the wavelet decomposition, the images p; (I = 0,...,n)
are successive versions of the original image at increasing
scales. Thus the first wavelet planes of the high-
resolution panchromatic image have spatial information
that is not present in the multispectral image. The
wavelet-based image merging can be carried out in two
ways, as follows.

A. Substitution Method

In the wavelet substitution method some of the wavelet
planes of the multispectral image are substituted with
planes that correspond to the panchromatic image as fol-
lows:

1. Register the low-resolution multispectral image to
the same size as the high-resolution panchromatic image
so that it is superimposed.

2. As in Section 2, perform histogram matching be-
tween the panchromatic image and the intensity compo-
nent of the color image. Let PAN be the panchromatic
image and R, G, and B be the three bands of the multi-
spectral image.

3. Decompose the R, G, and B bands of the multispec-
tral image to n wavelet planes (resolution levels). Usu-
ally, n = 2 or 3. Thus

n n

R= wg +R,, G=> wg, + G,,
=1 =1

B= wg, +B,.
=1

4. Decompose the panchromatic high-resolution im-
age accordingly:

n

PAN = D wp, + PAN,.
=1

5. Replace the first wavelet planes of the R, G, and B
decompositions with the equivalent planes of the pan-
chromatic decomposition.

6. Perform the inverse wavelet transform

n n
Rnew = IE Wp; + Rr7 Gnew = IE Wp; + Gr7
=1 =1

B

Bnew = Wpy + Br'
=1
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B. Additive Method

Another possibility is to add the wavelet planes of the
high-resolution image directly to the multispectral image.
The steps of this additive method are the following:

1. Adding to the Red—Green—Blue Components

The first possibility® is to add the high-resolution infor-
mation directly to the R, G, and B bands. The steps of
the method are

1. Register the low-resolution multispectral image
and perform histogram matching between the panchro-
matic image and the intensity component of the color im-
age as above.

2. Decompose only the panchromatic high-resolution
image to n wavelet planes (resolution levels). Usually,
n = 2or 3. Thus

n

PAN = > wp, + PAN,.
=1

3. Add the wavelet planes of the panchromatic decom-
position to the R, G, and B bands of the multispectral im-
age:

n
Rnew = E Wpy + R7 Gnew = 2 Wpy + G:
=1 =1

2. Adding to the L Component

Another possibility, which we consider to be the best ap-
proach, is to incorporate the high-resolution information
directly into the intensity component of the multispectral
image. As explained in Section 2, we use L = (R + G
+ B)/3 to represent the intensity component. We call
this the additive wavelet on L. (AWL) method for image
merging. Nuhez et al.28 carried out a preliminary study
of this approach. The steps of the method are the follow-
ing:

Assume steps 1. and 2. as above. Thus

n

PAN = D wp, + PAN,.
=1

3. Transform the RGB components of the multispec-
tral image to the LHS representation. Let L, H, and S be
the three components of the multispectral image.

4. Add the wavelet planes of the panchromatic decom-
position to the L component as follows:

n
Lnew = 2 Wp; + L.
=1

5. Transform the new LHS values back into the RGB
representation.

In the substitution method, the wavelet planes that
correspond to the multispectral image are discarded and
substituted with the corresponding planes of the panchro-
matic image. However, in the additive method all the
spatial information in the multispectral image is pre-
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served. Thus the main advantage of the additive method
is that the detail information from both sensors is used.
In practice the results of the substitution method are
similar to the results of the additive method but slightly
defocused, showing that spatial information present only
in the multispectral image is lost during the substitution
process. Also, the results of the substitution method
show some mixed colors in the boundaries of monochro-
matic areas. Thus here we always prefer the additive
method over the substitution method for the fusion of im-
ages.

The main difference between adding the panchromatic
wavelet planes to the R, G, and B bands as opposed to the
L component is that, in the first case, panchromatic infor-
mation is added in the same amount to all three bands,
biasing the color of the pixel toward the gray, whereas in
the second case the high-resolution information modifies
only the intensity (L), preserving multispectral informa-
tion in a better way. Thus, from the theoretical point of
view, adding to the L. component is a better choice than
adding to the R, G, and B bands. As stated in Section 2,
the reason for using the L component to represent the in-
tensity instead of using I or L’ is that I ignores two of the
RGB values and, with L', the increments of intensity (ob-
tained by adding the wavelet planes) are, in some cases,
not distributed proportionally to the RGB values.

The advantages of using the wavelet image merging
technique over the standard IHS or LHS methods are

1. The spectral quality of the color image is preserved
to a high degree.

2. The resolution of the panchromatic image is added
to the solution without discarding the resolution of the
multispectral image. Thus the detail information from
both images is used.

3. The total flux content (mean value) of a wavelet
plane is 0. Thus the total flux of the multispectral image
is preserved.

4. The AWL method can be considered to be an im-
provement on the classical IHS/LHS method in the sense
that the intensity component is not substituted with the
panchromatic image, but the highest resolution features
not present in the multispectral image are introduced
into the merged image by adding the first wavelet planes
of the panchromatic image to the intensity component.

The number (n) of wavelet planes that must be added
(or substituted in the substitution method) depends on
the ratio between the resolutions of the panchromatic and
multispectral images. For example, if the panchromatic
image is a 10-m SPOT image and the multispectral image
is a 30-m Landsat image, the first wavelet plane of the
panchromatic image (w;) contains the detail information
between 10 and 20 m, whereas the second wavelet plane
(wy) contains the spatial information between 20 and 40
m that is greater than the pixel size of the Landsat image.
Thus in this case n = 2 would suffice. However, in prac-
tice the SPOT and Landsat images are taken at different
epochs, and for incorporating all the spatial information
present in the SPOT image use of another wavelet plane
(n = 3) is advised.
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Fig. 1. Detail of the SPOT image.

5. RESULTS

We applied the above methodology to merge SPOT-PAN
and Landsat (TM) images. The original panchromatic
SPOT images have 10-m pixels, whereas the original mul-
tispectral Landsat (TM) images have 30-m pixels. The
SPOT panchromatic band has a spectral response be-
tween 0.45 and 0.80 um with the peak at 0.65 um. The
Landsat original bands were converted to the (RGB) sys-
tem with the following transformation: R = (Bj
+ B2, G = (Bs + By)/2, B=(B; + By)/2. The im-
ages were registered, and the SPOT image was corrected
photometrically to present a histogram similar to the L
component of the Landsat image. This photometric cor-
rection was carried out by histogram matching as ex-
plained in Section 2. Then we applied the AWL image
fusion technique and compared the results with those
given by the standard methods.

Figure 1 shows detail of the original SPOT image. Fig-
ure 2(a) shows the same area of the Landsat image. The
spatial resolution of the SPOT image is clearly better
than the Landsat image, as expected from the different
pixel size. It is easy to see that the SPOT and Landsat
images were taken at different epochs. Note, for ex-
ample, the aspect of the riverbed, the water ponds (black
rounded areas in the SPOT image), or the crop fields,
which in the SPOT image are clearly different from their
appearance in the Landsat image. Also, there are sev-
eral structures in the SPOT image that were not present
when the Landsat image was taken.

Figure 2(b) shows the result of the fusion of the Land-
sat and SPOT images by the standard IHS method. The
increase in resolution with respect to the original Landsat
image is evident. Most of the resolution of the SPOT im-
age was incorporated into the result. However, as stated
above, there is spectral degradation and intensity depen-
dence of the resulting color and a strong correlation be-
tween the merged image and the panchromatic intensity.
This fact can be seen qualitatively in the colors of the crop
fields and in the aspect of the city streets and of the river-
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bed at the bottom of the image, in comparison with the
same areas in Fig. 2(a). Figure 2(c) shows the fusion of
the same images with the standard LHS method. Here
the colors of the fields in the image have a better match
with the corresponding colors of Fig. 2(a), but note, for ex-
ample, the blue color of the water beside the city (black in
the Landsat image) as in other areas. Note, also, the as-
pect of the riverbed and of the city streets, which are simi-
lar to those of the IHS result.

Figure 2(d) shows the result of the fusion by the AWL
method. In this example three wavelet planes were
added. As in the IHS/LHS solution, most of the resolu-
tion of the SPOT image was incorporated into the merged
image. However, in this case the spectral characteristics
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of the Landsat image are preserved better than in the
standard mergers. Note the nearly identical tonalities of
Figs. 2(a) and 2(d). In particular, the water beside the
city is black as in the Landsat image, the bed of the river
has the same appearance as in Fig. 2(a), and the streets of
the city are better delineated than in the standard re-
sults.

Although in this example we do not have any original
image (Landsat at 10-m pixels) for comparison, we can
quantify the behavior of the AWL method in comparison
with the standard methods by computing the correlation
of the THS, LHS, and AWL solutions with regard to the
SPOT and Landsat images. To compute the correlation
we use the expression

(c)

(d)

Fig. 2. (a) Detail of the Landsat (TM) image, (b) Result of fusion by the standard IHS method, (c) Result of fusion by the standard LHS

method, (d) Result of fusion by the AWL method.
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Table 1. Correlation between IHS, LHS,
and AWL Merging Methods and SPOT
and Landsat (TM) Images

Correlation
Images Red Green Blue
TM/SPOT 0.733 0.857 0.799
ITHS/SPOT 0.920 0.825 0.712
LHS/SPOT 0.813 0.905 0.828
AWL/SPOT 0.742 0.884 0.817
THS/TM 0.798 0.802 0.793
LHS/TM 0.867 0.863 0.845
AWL/TM 0.919 0.915 0.910
npix
2 (4, - B)”
j=1

Corr(A/B) =1 —

npix

> B?
j=1

Note that the target for the correlation is not 1.0, be-
cause we do not have any original Landsat images at
10-m pixels with which we can compare the results of the
merging methods. Also, a higher correlation with SPOT
does not mean a better result.

Table 1 shows the correlations between the solutions
with the THS, LHS, and AWL merging methods and the
original Landsat and SPOT images. The first line of
Table 1 shows the correlation between the R, G, and B
bands of the Landsat (TM) image and the SPOT image.
The second and third lines show the correlation between
the R, G, and B bands of the ITHS and LHS solutions and
the SPOT image. The fourth line shows the correlations
of the AWL solution. Note that the correlations of the
THS and LHS solutions are higher (especially in R) than
the correlations of the AWL solution. This means that
the standard solutions are closer to the SPOT image than
the AWL solution. However, this is not a weakness of
the AWL method. As stated above, there is a strong cor-
relation between the IHS and LHS merged images and
the intensity of the panchromatic image. This exces-
sively high correlation produces solutions that are closer
than desirable to the SPOT image. The correlation is
however, lower in the additive wavelets solution. This is
a positive result, because it indicates a lower dependence
of the AWL solution on the SPOT image.

Lines 5-7 in Table 1 indicate the correlation between
the same solutions as above and the Landsat (TM) image.
Note that the correlation of our AWL solution is higher
than of the IHS and LHS merging methods. This means
that, as stated above in qualitative terms, the additive
wavelet solution on L preserves the spectral characteris-
tics of the multispectral image to a greater extent than
the THS and LHS solutions. Thus the additive wavelet
solution on L behaves better than the standard methods.

6. CONCLUSIONS

The AWL method combines a high-resolution panchro-
matic image and a low-resolution multispectral image by
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the addition of some wavelet planes of the panchromatic
image to the intensity component [defined as L = (R
+ G + B)/3] of the low-resolution image. With this
method, the detail information from both images is pre-
served. The method is capable of enhancing the spatial
quality of the multispectral image while preserving its
spectral content to a greater extent. The AWL method
does not modify the total flux of the multispectral image,
since the mean value of each of the added wavelet planes
is 0. The AWL method can be considered to be an im-
provement on the classical IHS or LHS methods in the
sense that the intensity is not substituted by the panchro-
matic image but the high-resolution of the panchromatic
image is injected into the merged image by the addition of
some wavelet planes of the panchromatic image to the in-
tensity component of the multispectral low-resolution im-
age.
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