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Abstract 

Morphological operations can be efficiently computed on parallel architectures using the decomposition of the structuring elements. In 
some cases, decomposition is guided to optimize computation for a given underlying hardware, but in other cases it is the shape of the 
structuring elements which directs the decomposition. In this paper we present a method to decompose disks. Morphological operations with 
isotropic structuring elements present interesting properties as shape and size descriptors. The method developed is based on a constraint- 
satisfaction algorithm that gives an optima1 decomposable disk. Optimality is given by the shape of the disk since it is the best discrete 
approximation of a circle that allows a 3 X 3 decomposition. 0 1997 Elsevier Science B.V. 
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1. Introduction 

Mathematical morphology is a theory which has become 

an important nonlinear approach to image analysis [ 1,2]. It 

has been successfully applied due to its ability to deal with 
intuitive notions such as shape, size or connectivity. 
Another important reason for its success is the simplicity 
of being computationally implemented. Most of its opera- 
tors have an intuitive interpretation about how they trans- 
form the image. In general, morphological transformations 
change the gray level of the image depending on the given 
structuring element. The shape of the element usually deter- 
mines the image transformation result. 

Parallel computers have been widely used to improve 
morphological algorithms. Also, some specialized architec- 
tures, such as the Cytocomputer, have been built to perform 
effective morphological operations [3]. To exploit this hard- 
ware, it is important to compute erosions and dilations as 
recursive processes. Thus, the decomposition of the struc- 
turing elements is an essential step in this process. 

The problem of decomposing structuring elements has 
been studied in depth in previous works [4,5]. In some 
cases the decomposition has been guided by the shape of 
the structuring element. The work of Xu [6] considers the 
decomposition problem for convex structuring elements. A 
very interesting approach, developed by Park and Chin [7], 
decomposes structuring elements of arbitrary shape. 
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In this paper, we present a method to obtain discrete 
circular structuring elements and their decomposition. The 
isotropy property of the structuring elements is very impor- 
tant in image analysis, especially for shape and size descrip- 
tors. Pattern spectrum [S] for shape description is based on a 
family of morphological openings with circular structuring 
elements. 

Isotropic morphological openings have been used to com- 
pute granulometries which provide size distribution func- 
tions of nodules in radiographic images [9]. 

In some computer vision approaches, image is repre- 
sented by a scale space image constructed by an isotropic 
smoothing of the image for different scales. The vision pro- 
blems have shown the impracticability of using linear pro- 
cesses alone. In this sense, the morphological operators are 
an interesting nonlinear approach to construct a nonlinear 
scale space [lo]. 

For a computational model of preattentive texture percep- 
tion, isotropic structuring elements have been used to com- 
pute nonlinear postinhibition responses [ 11,121, where the 
morphological dilation at different sizes allows best-tuned 
responses to be extended over an isotropic neighborhood. 
The introduction of morphological operations has allowed a 
fast algorithm of the model to be constructed. 

Also, we can state that for nonlinear filtering gray-level 
morphology is an important technique. Isotropic structuring 
elements can have an important role in preserving the shape 
of the image objects in a filtering step. 

Finally, we want to consider that in practical vision 
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applications time requirements have usually implied solu- 
tions based on binary morphological operations on the 
binarized image versions, given that there exist efficient 
algorithms to compute them based on the image distance 
map [ 131. Sometimes, success in these applications could be 
improved by computing morphological operations directly 
on gray level images. Reducing costs for gray-scale flat 
morphology can be an interesting contribution in this field. 

To sum up, in this work we present a method to obtain the 
shape of isotropic structuring elements and to compute their 
decomposition in 3 X 3 basic structuring elements. In order 
to do this, we have organized the paper in three parts. First, 
we give a brief introduction and basic definitions to the 
decomposition problem. Second, we define the shape of a 
decomposable disk. Finally, we give the decomposition of 
the defined disk. 

2. Background and definitions 

In this section we introduce a brief review of recently 
developed methods to decompose structuring elements 
from their boundary representation. For this purpose we 
give the concept of convex and concave boundaries, 
expressed in terms of a chain code representation, as well 
as some propositions which define the decomposability of a 
given element. 

In order to improve the morphological erosion and dila- 
tion computation, we can use the following properties: 

fee= {[...((feB’)eB2)...]eB”} (1) 

fOB={[...((fOB’)082)...]OB”} (2) 

where B = B’ @ B2 @ . . . @ B” represents the decomposi- 
tion of B. Therefore, we can compute a basic morphological 
operation by applying the operation recursively on the 
decomposition of the original structuring element. The 
decomposition allows to reduce the number of basic opera- 
tions, and makes the region of support smaller. 

The optimality of a given decomposition depends on the 
underlying image processing hardware. On classical 
sequential architectures, the morphological operation 
depends on the number of shifts, that is, the number of 
points that appear in all the decomposed elements. Further- 
more, on general array processors the cost usually depends 
on the required number of shifts. However, for 4-connected 
array processors the cost is the sum of the distances of all 
pixels in the structuring elements in a city block metric. 
Finally, on pipeline machines the region of support of the 
structuring elements is fixed and the cost depends on the 
number of basic structuring elements of given dimensions. 

In this work we do not pretend to obtain an optimal 
decomposition of disks for an especial underlying architec- 
ture. The research is aimed at constructing optimal decom- 
posable disks. For that purpose we will consider 
decomposition with 3 X 3 basic structuring elements and 

will regard the number of required shifts for a given decom- 
position as a cost evaluator. 

We will base our approach on [7]. This work gives the 
method of obtaining the decomposition of simply connected 
binary structuring elements of arbitrary shape into 3 X 3 
elements. The decomposition is obtained from the boundary 
of the structuring element, which is represented by the Free- 
man’s chain code. The boundary chain code contains suffi- 
cient shape information to obtain the decomposition. 

In order to be able to decompose structuring elements of 
arbitrary shape we have to distinguish two types of bound- 
aries: convex and concave boundaries, which we are now 
going to define. 

Dejinition 2.1. A binary structuring element S is convex if it 
is an intersection of discrete half-planes in the direction of 
multiples of 45“. The chain code of the convex boundary of 
a given element is represented by 

S = 0”” lx’ 2X2 3”j4”” 5x5fj”67”7 = [i”‘li= 0, _, ,, , (3) 

where Xi > 0 means that the chain code i repeats Xi times and 
xi = 0 when the direction i does not appear at the boundary. 
In order to be a valid chain code for a convex structuring 
element it must satisfy the following conditions: 

x7 +x0 +x1 =x3 +x4 +x5 (4) 

xl +x2+x3=x~+&j+x7 (5) 

We will also represent the chain code S as the array 

(x0,x1 ,x2J3,x4,x5,x6,x7). 

In Fig. l(a) we can see a convex structuring element. 
A structuring element contains a concave boundary if the 

shape of the element cannot be expressed as Eq. (3). Hence, 
there exists an infinite number of different concave bound- 

aries. 
Considering that we are defining the shape of a structur- 

ing element in order to obtain its decomposition, we can 
restrict the set of concave boundaries that we are going to 
deal with. The constraint is given by the following fact: any 

(a) (b) 

Fig. 1. (a) Convex structuring element with chain code 0’1 ‘273447526577; 

(b) concave structuring element with chain code Qu0QJ~Q~~Q,.,,02 

Qv:Q,,2’246Qv:536. 
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Fig. 2. (a) Five types of concave boundaries of 3 X 3 dimensions, denoted 

as (I, J, L, V and r; (b) concave boundaries of type r in the eight possible 

starting directions, denoted by the number i in Qr,. 

concave boundaries of the initial structuring element must 
be contained in the basic decomposed elements. 

The above statement takes us to the consideration that, for 
a 3 X 3 decomposition, we can construct the set of all 
concave boundaries that can be contained in a 3 X 3 ele- 
ment. In Fig. 23(a) we can see the five possible types of 
boundaries,3 which are denoted as U, J, L, V and r. We have 
also to consider all their possible rotations. Then, any spe- 
cific 3 X 3 boundary is denoted as Qri where T indicates the 
type and i denotes the starting chain code direction. 

The constraint introduced by the dimensions of the basic 
structuring element allows us to make a restricted definition 
of the boundaries of a concave structuring element. Its 
boundary is formed by non-overlapping concave and con- 
vex boundaries. 

Definition 2.2. A binary and connected structuring element S 
is concave if its boundaries can be represented by the fol- 
lowing expression 

S= [Qg] 

lS’ 
[ 1 Q STY . . . 

T’ T=U,J,L,r 
7s7 

where Si denotes the repetition of the i direction in convex 
boundaries, and Sri denotes the repetition of the Qri concave 
boundary. We have to assume that the chain code super- 
scripts have to satisfy some constraints in order to represent 
the shape of a valid chain code. 

From this definition we can deduce that if STi = OtlTi, 
then X is convex; otherwise, we have a concave structuring 
element with boundaries that can be contained by basic 3 X 

3 elements allowing decomposition. 
Before proceeding with the decomposition problem, we 

give one more definition. 

Q1 42 43 44 

Q5 46 Q7 48 

Fig. 3. Set of 3 X 3 prime factors to decompose convex structuring 

elements. 

Dejinition 2.3. A given element A is a factor of S if there 
exists a structuring element B such that S = A @ B. A factor 
A of S is a prime factor iff every factor of A is equivalent to 
A or is a one pixel image. 

Now, we are going to introduce some decomposability 
criteria for convex and concave structuring elements. 

The problem has been solved for convex structuring ele- 
ments in [6]. Its results can be summarized in the following 
proposition. 

Proposition 2.1. Every convex structuring element S is 
decomposable into a sequence of dilations by a set of 

prime factors Q1,3Qz ,..., Qi3, given in Fig. 3. 

A constructive proof of this proposition provides an ele- 
gant algorithm presented in [6], which has been improved in 
[14] for 4-connected array processors. This algorithm has 
been included as the last step in a more general method to 
decompose the concave structuring element [7]. 

In the same way that 3 X 3 concave boundaries have been 
defined, the 3 X 3 concave prime factors can also be con- 
structed by considering all possible combinations of con- 
cave boundaries in 3 X 3 structuring elements. We will 
denote this set of prime factors as (Ai}. A subset of all 
these prime factors can be seen in Fig. 8. The set (Ai) of 
factors has been the basis for constructing a general decom- 
position algorithm in [7]. Before giving the general proposi- 
tion determining decomposability of any structuring 
element, we are going to define some notation. 

Let S be the concave element that we want to decompose, 
and {Ai) be the set of all prime factors that have 3 X 3 
concave boundaries. Hence, if S is decomposable then 

S=C,@C,@...@C,,,@B 

where Cj E {Ai) and B is a convex factor of S and conse- 
quently decomposable by Proposition 2.1. 

By definition of the concave boundary we can state that 
the boundary of S is formed by 

1. m distinct concave boundaries, VI,V2,. . .,V,, where V, is 
one of Qn’s where Sri f 0; 
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2. 1 distinct convex boundaries, d,,dz,. . .,dt, where dk is one 
of i’s directions where Sj # 0. 

From these boundaries we can take n concave prime fac- 
tors from {Ai}, that is, A ,,. ., A, that have boundaries in 
common with S, and consequently can be prime factors of S. 

The above notation allows us to construct the matrices 0 
and a, of dimensions m X n and 1 X n, respectively: 

[O]u = number of Vi in Aj 

[n], = number of d; in Aj 

Moreover, we construct Y and Z vectors of m and 1 dimen- 
sions respectively, from the chain code of the element, S: 

[Y]; = number of V, in S 

[Z]; = number of dj in S 

Finally, we define a vector X of m variables with non- 
negative integer values that will represent the decomposi- 
tion of S. The decomposition of S will be derived from the 
following proposition. 

Proposition 2.2. A given concave structuring element S is 
decomposable if there exists an X such that 

l.OX=Y 
2. nx5z 

3. x,A, @ . . . @ x,A, @ B is simply connected, and .xAi 

denotes x; dilations by A i 

(bo,bl ,. ,,b,), and bj = [Z - %%$,\di : 0 i i 5 7. There- 

fore, if such an X exists, the decomposition of S is 

4. B is a convex factor of S, defined by the chain code 

S=x,A, @ . . . @x,A, @B 

The definitions and propositions given above enable us to 
compute the 3 X 3 decomposition of any structuring ele- 
ment. This fact allows us to develop a general method to 
decompose circular structuring elements. 

The problem now consists of finding the chain code for a 
good approximation of a circle whose decomposability can 
be assured. Towards this objective, we firstly will define a 
decomposable chain code that can approximate a disk. Sec- 
ondly, we have to develop a fast algorithm to find this disk 
for any given radius. Finally, we will use Proposition 2.2 to 
obtain the general decomposition and then we will discuss 
the results. 

3. A method for disk decomposition 

As we have argued before, morphological operations with 
circular structuring elements are interesting for different 
applications. Therefore, the decomposition of such elements 
plays an important role towards the objective of optimizing 
algorithms. 

Fig. 4. A non-decomposable disk in 3 X 3 basic structuring elements. 

Discrete approximation of circles has been widely studied 
in the field of computer graphics [ 151. The most efficient 
algorithms are incremental circle generators that apply the 
midpoint criterion. That is, one given coordinate is 
increased step by step, and the other one is increased or 
not depending on the distance between two next pixels 
and the real circle boundary. 

Consequently, we have to define the boundary of the 
approximated disk in such a way that it could be decomposed. 

Generally, circles generated by the mentioned algorithms 
present concave and convex boundaries that cannot be con- 
tained by the 3 X 3 prime factors, which we have introduced 
in the previous section. In Fig. 4 we can see the best discrete 
approximation of a disk that cannot be decomposed in 3 X 3 
basic structuring elements. It presents some boundaries 
(marked with ?) that cannot be represented using concave 
boundaries of type CT, J, L, V and r. There is no general 
method that allows decomposition of such a discrete circle. 

If we do not consider concave boundaries then we can 
guarantee decomposability (Proposition 2.1). In this case we 
could approximate a disk by a polygon of eight sides, each 
side in one of the basic directions of a chain code. But this is 
not a very good approximation when the radius increases. 

To improve the approach we are going to introduce con- 
cave boundaries that allow assured 3 X 3 decomposition. 
This implies defining a disk approximation whose chain 
code should be expressed as in Eq. (6). Hence, we only 
can use the boundaries of Fig. 2(b). Considering the shape 
of a disk we can state that types U, J, L and V can introduce 
important errors in the shape of a discrete disk. Only type r 

boundaries (see Fig. 2(b)) can be useful for discrete approx- 
imations of disks. 

Therefore, a concave structuring element containing, 
exclusively, concave boundaries of type r can be expressed 
as 

which can be considered as the boundary of a polygon of 
sixteen sides, whenever Xi # OVi. Eight sides are given by 
the basic eight directions of a chain code. And the 
other eight (Q;},tli E (0 ,. . .,7} are approximations of 
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Fig. 5. (a) Example of a hexadecagon denoting the direction and boundary type of each side; (b) discrete hexadecagon approximating a disk of radius 12. The 

parameters of it6 chain code are i = 2, b = 6 and c = 3. 

segments with slopes -l/2, I/2, 2, -2, -l/2, l/2, 2, -2, 
respectively. 

The above discussion leads us to state that only a hexa- 
decagon can approximate a disk that can be decomposed in 
3 X 3 structuring elements. To ameliorate the discrete 
approximation of the disk implies decomposition in prime 
factors larger than 3 X 3. 

To maintain the isotropy of the circle we have imposed 
the symmetry of each side of the polygon with respect to the 
center of the element; that is, 

a =X0 =X2 =X4 =Xfj=X8 =X10=X12 =X,4 

b =x1 =x5 =x9 =x13 

C =x3 =x7 =x11 =x15 

Then the boundaries of the defined hexadecagon are 
expressed as 

In Fig. 5(a) we show a polygon and for each side the corre- 
sponding direction expressed by the chain code of Eq. (7). 
Moreover, in Fig. 5(b) we show an approximation of a disk 
with a radius of twelve pixels. 

As has been defined, for a given radius there can be some 
combinations of values for a, b and c, that define polygons 
of 16 sides. Therefore, in order to get optimal decomposable 
disks it is interesting to find the combination that minimizes 
the approximation error between the polygon and the circle. 

3.1. Fitting polygons by a least-squares approach 

In this section we develop a fast algorithm to find the 
parameters that define an optimal disk. It is the result of 
minimizing the error between the hexadecagon and a circle 
of the same radius. Minimization will be made by a least- 
squares approach. 

Firstly, we define the error function between the boundary 
of a disk of radius R and a polygon with a, b and c 

parameters. Provided that the disk presents symmetry with 
respect to the center, we will only consider the error func- 
tion for a quarter of a disk: 

R-a- 1 

E(a, 6, c) = IIF - k1l2 = 1 [F(x) - &>I2 
x=-($+20) 

where F(x) = dm, and k(x) is the value for the y 
coordinate on the polygon boundary that we want to con- 
struct. It must be pointed out that c can be expressed as 
c = R - [(b/2) + 3a], so it does not appear in the previous 
expression. 

The expression can be divided into three parts: 

E(a, b, 4 = 2EB(b’) + 2EA(a, b’) + &(a, b’) 

~2 g F(.x)~ +2 “9” [F(x) -k(x,b’)l* 
X=1 x=b’+ I 

R-a-l 

+ 1 [F(x) - (x - b’ - a)]* 
x=b’+2a+ I 

where b’ = b/2, and 
x-b’ 

if x - 6’ is even 

k(x, 6’) = 

( 

2 
x-b’+1 

2 
if x - b’ is odd 

The process to obtain the parameters a, b and c, that mini- 
mize this function can be considered as a constraint satisfac- 
tion algorithm with the following constraints: 

b’ E (0, . . ..R) 

a E (O,...,(R-b’)/3] 

The algorithm can be constructed exploiting the recursive 
expression of partial errors; that is 

E,(b’) = 2 F(x)2 = &(b’ - 1) + F(b’)2 (8) 
,X=1 
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+ [F(b’ + 2a - 1) - k(b’ + 2a - 1, b’)]* 

= EA(a - 1, b’) + [F(b’ + 2a) - a]* 

+ [F(b’ + 2u - 1) - a]* 

(9) 

thus, we can formulate the following algorithm. 

Algorithm 3.1. The values of a, b and c that minimize func- 
tion E can be obtained as follows: 

(4 (b) 
Fig. 6. Hexadecagons fitting a decomposable disk with minimum square 

error: (a) disks with odd radius value R = l,..., 25; (b) disks with even 

radius value R = 2,. .,24. 

Step 1. Construct a table storing values for F(x)Vx E { 0,. . ., 
R}, where F(x) = dm. 

Construct a table storing values for E,(b’)Vb’ E (0,. . ., 
R), computed recursively using Eq. (8). 

Construct a table storing values for E,(u,b’)V(u,b’) E 

{O,...,(R - b’)/3} X (0 , . . . ,R) , computed recursively 
using Eq. (9). 

constructed by a generator algorithm minimizing the error 
using a midpoint criterion. 

From these we can see that for the first 25 radii the poly- 
gonal approximation generally provides the same result as 
an optimal discrete approximation of circles. Evidently, 
when the radius increases, the error increases, since to 
approximate a circle by a hexadecagon supposes some 
errors, as we can see in Fig. 7(b) and Fig. 7(c). 

Step 2. For each (u,b’) E (0,. . .,(R - b’)/3] X (0 ,..., R), 

compute 

E(u, b, c) = 2E,(b’) + 2EA(u, b’) 

R-a-1 

+ 1 [F(x) - (x - b’ - a)]* 
x=b’+2a+l 

To evaluate the disk approximation we can compare it 
with the isotropic morphological operations that can be 
computed using distance transformations on binary images. 
Considering chamfer metrics we can state that the obtained 
disk by our approach has an error that is between the errors 
given by 5 X 5 chamfer metrics and 7 X 7 chamfer metrics 
given in [13]. 

using the constructed tables in previous steps. A pair (u,b’) 
is stored if it minimizes E for all (u,b’). 

Although some errors are introduced, decomposability by 
3 X 3 elements is quite an important property. Now, we are 
going to prove that these approximated disks are always 
decomposable. 

Step 3. Given the pair (a,b’), that is the result of the previous 
step, return a, b = 2b’ and c = R - 3a - b as the solution. 

3.2. Decomposition of disks 

Some results are given in Table 1. The polygons repre- 
sented by these results are shown in Fig. 6. In this table, we 
give the total error E(u,b,c) for a quarter of a polygon and 
the average error B, that is, error per point. In the same table 
we provide the error per point for an optimal discrete 
approximation of a circle. This approximation has been 

By Proposition 2.2, we have to solve a linear equation 
system in order to find a decomposition of a concave struc- 
turing element. Then, for a given disk S, defined by 

S= QgObQ;, lcQ;22bQ;33cQ;~4b~s5cQ~6b~,7c 

we have to construct the corresponding linear system. 
Afterwards, we have to find the solution that assures 

Table 1 
Results of the developed algorithm for some given radii. For each radius we give the parameters a, b and c defining the optimal decomposable disk. 
Furthermore, we give the error function E(a,b,c). In order that these results could be compared to a discrete optimal circle, we give the average error for 

each point in the decomposable hexadecagons, Enex, and the average error for the circles generated by a midpoint generator algorithm, I?,,, 

b’+2a 

E,.,(u,b’) = x IF(x) - k(x, WI* 
x=b’+l 

= EA(u - 1, b’) + [F(b’ + 2~) - k(b’ + 2u, b’)]* 

Radius 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

; 0 00 2 0 2 0 2 4 0 4 0 4 1 4 I 4 2 6 1 6 1 6 2 6 2 2 8 2 8 3 8 8 3 3 8 10 3 10 3 10 4 10 4 12 3 12 4 12 4 

c 112334231453445345 5 6 4 5 8 6 7 
E(a,b,c) 0 0.14 0.11 0.66 0.36 0.61 0.53 0.63 1.22 0.81 1.31 1.00 1.44 1.97 1.38 2.13 1.74 2.67 2.67 2.22 3.05 2.87 4.06 3.59 3.45 
E Her 0 0.07 0.03 0.11 0.06 0.08 0.05 0.06 0.10 0.06 0.09 0.06 0.08 0.10 0.06 0.09 0.07 0.11 0.10 0.08 0.10 0.09 0.13 0.10 0.10 
EMId 0 0.07 0.03 0.11 0.06 0.08 0.05 0.06 0.10 0.06 0.09 0.06 0.07 0.08 0.05 0.09 0.07 0.08 0.07 0.06 0.08 0.06 0.09 0.06 0.07 
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(4 (4 
Fig. 7. (a) Graphical comparison between the error of the obtained decomposable hexadecagons and the best discrete approximation of circles with a midpoint 

generator algorithm: (b) example of two optimal disks generated by a midpoint algorithm with radii 20 and 100; (c) example of two optimal decomposable 

hexadecagons with radii 20 and 100. 

decomposability for any structuring element having this 
shape. 

Firstly, we have to take from the set {A,], introduced in 
Section 2, all possible concave prime factors for S, that is, 
we select every structuring element that has all its bound- 
aries contained in S. These structuring elements are shown 
in Fig. 8. We have 56 prime factors with boundaries that can 
be contained by a hexadecagon. They are grouped in 
families of the same shape. 

Therefore, these elements are all the possible prime fac- 
tors we can use to prove decomposability for the defined 
disks. We will denote them as { Ci)Vi E { 1,. .,56}, and 
from them we can construct the matrices 0 and 62, with 
dimensions 56 X 8, as specified in Proposition 2.2. 

Secondly we have to construct the vectors Y and Z from S, 
which are 

Y=(Q,a,a,a,a,a,a,a) 

Z=(b,c,b,c,b,c,b,c) 

independently of the radius. Then, the linear system to be 
solved is 

ox =Y 

Z-B =flx 

bT+bo+b, =b3+b‘,+b5 
(10) 

b, + b, + b, =b,+b6+by 

where X = (x , , . . . ~5~) is the vector of variables whose solu- 

tion values represent the number of dilations for each struc- 
turing element being a concave prime factor of S. 

Also, B = (bo,bl ,b2,b3,b4,b5,b6,b7) is a vector of variables 
too, whose solution represents the chain code of the convex 
structuring element B. Two last equations in Eq. (10) force 
the solutions for bj to represent a valid chain code. 

Hence, the solution of this system has to provide with the 
following decomposition: 

S=xtC, @ . . . @x56& @ B 

but the problem is to find the solution, given that Eq. (10) is 
an undetermined system. It is formed by 64 variables and 18 
equations, which imply a large number of solutions. 

To avoid this indetermination, we have considered each 
family separately, constructing nine matrices 0 and fl, one 
for each family of basic structuring elements. Every family 
assures that every concave boundary of S will be contained 
in one basic structuring element of the family. 

For family 1 the system has been constructed as follows. 
We take the chain code representation for each basic struc- 
turing element of family 1, that is, 

C1 = Qd2*Qr5 

Cz = Qr 1 Qr462 

C, = Qr24* Qr7 

C, = 02Qr3Qr6 

then from these chain codes we construct the corresponding 
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Family 6 

Family 8 

Fig. 8. Set of concave structuring elements with boundaries contained in a 

discrete approximation of a disk. The structuring elements have been 

grouped in families, according to the shape. 

matrices 0 and fi, for concave and convex boundaries, 
respe 

@= 

:ct 

f 

\ 

ively, 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

0100 

1 0 0 0 

0 0 0 1 

0 0 1 0 

a2= 

0 0 0 2 

0 0 0 0 

2 0 0 0 

0 0 0 0 

0 0 2 0 

0 0 0 0 

0 2 0 0 

0 0 0 0 

The solution of Eq. (10) considering the above matrices is 

X=(a,a,a,a) 

B = (b - 2a, c, b - 2a, c, b - 2a, c, b - 2a, c) 

which implies 

S = aC1 @ aC* @ aC3 @ aC, @ (b - 2a)Ql@ cQZ 

@ (b - 2a)Q3 @ &?4 

The same process over all families implies to solve a linear 
system with 18 equations and 12 variables for families 1 to 
4, and 18 equations with 16 variables for families 5 to 9. In 
every case the system is overdetermined. For every linear 
system we have obtained one unique solution that is given in 
Table 2. The solutions are given in terms of the shape of the 
disk, that is, in terms of a, b and c parameters. 

4. Results 

In this section we will give the algorithm to compute a 
morphological operation with the obtained results. After- 
wards, we analyze the different solutions in terms of com- 
putation cost. 

Considering the obtained results, to compute a morpho- 
logical operation implies acting in two steps: 

Step 1. For a disk, S, of a given radius apply Algorithm 3.1 
obtaining parameters a, b and c. 

Step 2. Compute the morphological operation with S using 
the recursive property of Eq. (2), that is 

S=aC,@...@aC,@B (11) 

where n = 4 for families 1 to 4, and II = 8 for families 5 to 9, 
the shape of Ci depends on the selected family (see Fig. S), and 

B=boQl@b,Q2@boQ3@b,Q4 (12) 

where Qi are given in Fig. 9, this expression is the result of 
applying the algorithm to decompose convex structuring 
elements [6]. 

In the last step there are two parts. The first corresponds to 
the decomposition with concave structuring elements; in 
this case the solution is always the same independently of 
the selected family. The second part is related to the decom- 
position of a convex structuring element that depends on the 
values of the B solution, which satisfies an interesting prop- 
erty that simplifies decomposition. 

Every B solution verifies b. = b4, b, = b5, bz = b6 and 
b3 = b,. Therefore, according to algorithm 1 in [6], decom- 
position of B only depends on the values of b. and b ,, giving 
Eq. (12). These values are always a function of the a, b and c 
parameters. 

For instance, a disk of radius 16 can be approximated by a 
hexadecagon with parameters a = 3, b = 8 and c = 3 (see 
Table 1). Then the decomposition using family 1 is 

S,6 = 3A, @ 3A2 @ 3A3 @ 3A4 @ 2&l @ 3Q2 @ 2Q3 

03Q4 

where b - 2a = 2 and c = 3. 
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Table 2 
Solutions for the decomposition of a disk using different families of concave structuring elements. Left column represents the family; x, represents the number 

of dilations with concave element C, of the corresponding family; b, gives the chain code of the resulting convex structuring element 

Family x = (X,,...,X,) 

1 x = (a,a,a,a) 
2 X = (a,a,a,a) 

3 X = (a,a,a,a) 
4 X = (a,a,a,a) 
5 X = (a,a,a,a,a,a,a,aj 
6 X = (a,a,a,a,a,a,a,a) 

7 X = (a,a,a,a,a,a,a,a) 
8 X = (a,a,a,a,a,a,a,a) 
9 X = (a,a,a,a,a,a,a,a) 

B = (b,,...,bx) 

R = (b - 2a,c,b - 2a.c. b - 2a,c,b - 2a.c) 
B = (b - 2a,c,b - 2a,c,b - 2a,c,b - 2a,c) 

B = (b,c-a,b,c-a,b,c-a,b,c-a) 
B = (b - 2a,c,h - 2a,c,b - 2a,c,b - 2a,c) 
B = (b - 5a,c - 2a,b - 5a.c - 2a,b-5a.c - 2a,b - 5a,c - 2a) 
B = (b - 2a,c - 4a,b - 2a,c - 4a,b - 2a,c - 4a,b - 2a,c - 4a) 

B = (b - 6a,c,b - 6a,c,b - 6a,c,b - 6a,c) 
B = (b - 2a.c - 4a,b - 2a,c - 4a,b - 2a,c - 4a,b - 2a,c - 4a) 
B = (b - 2a,c - 2a,b - 2a.c - 2a,b - 2a.c - 2a,b - 2a,c - 2a) 

As has been analyzed in previous works 161, this decom- 
position of B can introduce some shifts. These can be 
avoided by changing the center of the basic structuring ele- 
ments and introducing some additional shifts. 

Considering the obtained solutions, we can note that 
every one verifies bo = bZ = b4 = b6 and bl = b3 = 
b, = b,. Hence, we can avoid unnecessary shifts by using 
the elements Qi given in Fig. 9 and replacing the following 
dilations in Eq. (12): 

boQl @ boQ3 =kQl @ kQ1’ @ kQ3 @ kQ3’ 

if b. = 2k, and 

boQl@boQ3=(k+l,Ql@kQl’@(k+1)Q3@kQ3’ 

0 ](l>O)] 

ifb0=2k+ l,and 

~,Q~O~~Q~=~Q~@PQ~‘OPQ~OPQ~’ 

if b, = 2p, and finally 

b,Q2@b,Q4=(p+l)Q2@pQ2’@(p+l)Q4 

OpQ4’ 0 I@, 1)) 

if b, = 2p + 1; { (x,y)} denotes the shift to be applied. 
Thus far, we have exposed how to decompose a disk 

given by a, b and c parameters, using a specific family of 
basic structuring elements. Now, we are going to analyze 
how each family reaches the decomposition. 

By definition, every solution must satisfy Xi 2 0 and b, 2 

Q1 42 

Fig. 9. Set of basic prime factors 

elements. 

43’ 44’ 
-- 

to decompose convex structuring 

0, for all i. Hence, firstly we will consider which constraints 
introduce the previous conditions to enable decomposition 
by each family. As we can see in Table 2, the condition on x, 
is fulfilled for every family. Otherwise, for the second con- 
dition we have to add some constraints. 

Secondly, we will take into account the computation 
complexity of each solution. We give the total number of 
points in all the structuring elements of the decomposition 
as a computation cost evaluator. This number will be 
denoted by h. 

Table 3 gives the set of constraints added and the cost 
evaluator, X, for each family. As we can note in this table, 
better costs are given by families 7, 8 and 9. However, at the 
same time these families imply some very restrictive con- 
straints. 

Constraints b 2 5a, c 2 4a, c 2 2a are not satisfied for the 
disk approximation given by the developed algorithm 
(Table 2). Then families 3, 5, 6, 7, 8 and 9 cannot assure 
decomposability. 

Only families 1, 2 and 4 impose constraints that are 
satisfied by the approximated disks. In effect, we have 
proved that these constraints are satisfied by all disks from 
radius 1 to 500. Although we have not proved global decom- 
posability, we think it is a good result considering that 
in image processing applications greater radii are not 
frequently used. 

In summary, we can take families 1,2 and 4 separately, as 
sets of prime factors that assure decomposability of optimal 
hexadecagons approximating disks, and with a computa- 
tional cost of 4(3a + b + c). In general, the decomposition 

Table 3 

Constraints and computation costs imposed by each family 

Family Constraints 

i ,2,4 b 2 2a 
3 bz0 
5 b 2 5a 

6 b 2 2a 
7 b 2 6a 
8 b 2 2a 
9 b 2 2a 

CZO 
c>a 
c 2 2a 
c 2 4a 
CZO 
c 2 4a 
c 2 2a 

h 

4(3a + b + c) 
4(3a + b + c) 
4(5a + b + c) 
4(4a + b + c) 

4(2a + b + c) 
4(2a + b + c) 
4(2a + b + c) 
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for a given S hexadecagon of parameters a, b and c is 

S = aC1 @ aCz @ aC3 @ aC, @ (b - 2a)Ql@ cQ2 

@ (b - 2a)Q3 @ cQ4 

where Cj represents the elements of one family, 1, 2 or 4 
(see Fig. S), and Qi are shown in Fig. 9. 

5. Conclusions 

In this work we present an algorithm to obtain 3 X 3 
decompositions of disks. Isotropic structuring elements pre- 
sent interesting properties in computing morphological 
operations. For this reason we have developed a method 
to decompose disks of any given radius to improve the 
computation of these morphological transformations. 

First we have developed a constraint-satisfaction algo- 
rithm to obtain the decomposable element which better 
approximates a circle of arbitrary radius by a least-squares 
approach. The algorithm exploits the recursive error expres- 
sion, storing computed partial path costs. 

A disk is approximated by a hexadecagon which is the 
best disk approximation that allows 3 X 3 decomposition. 
The shape of the disk is expressed by three parameters a, b 
and c. These parameters represent the sides of the approxi- 
mated disk. The values b, 2a and c indicate the number of 
pixels of sides with slopes 0, l/2, 1, respectively. Consider- 
ing a specific symmetry we can construct the complete poly- 
gon from the given three sides. 

These parameters are also used to find the decomposition 
of a disk. For this purpose, we have presented some families 
of basic structuring elements that can decompose hexa- 
decagons. We have analyzed the computation cost of the 
decomposition result for each family, as well as the con- 
straints imposed in order to assure decomposition. 

Consequently, we have selected three families, 1,2 and 4 
shown in Fig. 8, that assure the decomposition of approxi- 
mated disks for a wide range of radii. Computation cost, in 
terms of number of pixels of the complete decomposition, is 
4(3a + b + c). 
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